cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007726 Number of spanning trees of quarter Aztec diamonds of order n.

This page as a plain text file.
%I A007726 #43 Jan 11 2025 03:33:28
%S A007726 1,1,4,56,2640,411840,210613312,351102230528,1901049105201408,
%T A007726 33349238079515381760,1892086487183556298556416,
%U A007726 346728396311328694807284940800,205021218459835103075295973360128000,390870571052378289975757743555515137130496
%N A007726 Number of spanning trees of quarter Aztec diamonds of order n.
%D A007726 Mihai Ciucu (ciucu(AT)math.gatech.edu), in preparation, 2001.
%H A007726 Seiichi Manyama, <a href="/A007726/b007726.txt">Table of n, a(n) for n = 1..50</a>
%H A007726 Timothy Y. Chow, <a href="https://doi.org/10.1090/S0002-9939-97-04049-5">The Q-spectrum and spanning trees of tensor products of bipartite graphs</a>, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3155-3161.
%H A007726 R. Kenyon, J. Propp and D. Wilson, <a href="https://doi.org/10.37236/1503">Trees and matchings</a>, Electronic Journal of Combinatorics, 7(1):R25, 2000.
%H A007726 D. E. Knuth, <a href="https://arxiv.org/abs/math/9501234">Aztec Diamonds, Checkerboard Graphs, and Spanning Trees</a>, arXiv:math/9501234 [math.CO], 1995; J. Alg. Combinatorics 6 (1997), 253-257.
%H A007726 R. P. Stanley, <a href="https://doi.org/10.1016/S0012-365X(96)83024-X">Spanning trees of Aztec diamonds</a>, Discrete Math. 157 (1996), 375-388 (Problem 251).
%H A007726 <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F A007726 a(n) = Product_{0<j<k<n} (4 - 2*cos(j*Pi/n) - 2*cos(k*Pi/n)) [from Chow]. - _Sean A. Irvine_, Jan 20 2018
%F A007726 From _Vaclav Kotesovec_, Dec 30 2020: (Start)
%F A007726 a(n) ~ sqrt(Gamma(1/4)) * 2^(5/8) * exp(2*G*n^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n/2) * (1 + sqrt(2))^n), where G is Catalan's constant A006752.
%F A007726 a(n) = sqrt(A007341(n) / (n * 2^(n-1))). (End)
%t A007726 Table[Product[Product[4 - 2*Cos[j*Pi/n] - 2*Cos[k*Pi/n], {j, 1, k-1}], {k, 2, n-1}], {n, 1, 15}] // Round (* _Vaclav Kotesovec_, Dec 30 2020 *)
%t A007726 Table[Sqrt[Resultant[ChebyshevU[n-1, x/2], ChebyshevU[n-1, (4-x)/2], x] / (n * 2^(n-1))], {n, 1, 15}] (* _Vaclav Kotesovec_, Dec 30 2020 *)
%o A007726 (PARI) default(realprecision, 120);
%o A007726 {a(n) = round(prod(j=2, n-1, prod(i=1, j-1, 4*sin(i*Pi/(2*n))^2+4*sin(j*Pi/(2*n))^2)))} \\ _Seiichi Manyama_, Dec 29 2020
%Y A007726 Cf. A007725, A007341, A065072, A340052.
%K A007726 nonn
%O A007726 1,3
%A A007726 _Richard Stanley_
%E A007726 More terms from _Sean A. Irvine_, Jan 20 2018