cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007728 5th binary partition function.

This page as a plain text file.
%I A007728 #34 Aug 02 2023 14:36:46
%S A007728 1,1,2,2,4,3,5,4,8,6,9,7,12,8,12,9,17,12,18,14,23,15,22,16,28,19,27,
%T A007728 20,32,20,29,21,38,26,38,29,47,30,44,32,55,37,52,38,60,37,53,38,66,44,
%U A007728 63,47,74,46,66,47,79,52,72,52,81,49,70,50,88,59,85,64
%N A007728 5th binary partition function.
%C A007728 The number of ways of writing n as a sum of powers of 2, each power being used at most four times. - _Dmitry Kamenetsky_, Jul 14 2023
%H A007728 Alois P. Heinz, <a href="/A007728/b007728.txt">Table of n, a(n) for n = 0..10000</a>
%H A007728 B. Reznick, <a href="http://dx.doi.org/10.1007/978-1-4612-3464-7_29">Some binary partition functions</a>, in "Analytic number theory" (Conf. in honor P. T. Bateman, Allerton Park, IL, 1989), 451-477, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.
%F A007728 G.f.: Product_{k>=0} (1 - x^(5*2^k))/(1 - x^(2^k)). - _Ilya Gutkovskiy_, Jul 09 2019
%p A007728 b:= proc(n, i) option remember;
%p A007728       `if`(n=0, 1, `if`(i<0, 0, add(`if`(n-j*2^i<0, 0,
%p A007728          b(n-j*2^i, i-1)), j=0..4)))
%p A007728     end:
%p A007728 a:= n-> b(n, ilog2(n)):
%p A007728 seq(a(n), n=0..70);  # _Alois P. Heinz_, Jun 21 2012
%t A007728 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 0, 0, Sum[If[n-j*2^i < 0, 0, b[n-j*2^i, i-1, k]], {j, 0, k-1}]]]; a[n_] := b[n, Log[2, n] // Floor, 5]; Table[a[n], {n, 0, 70} ] (* _Jean-François Alcover_, Jan 17 2014, after _Alois P. Heinz_ *)
%Y A007728 A column of A072170.
%Y A007728 Cf. A000123, A018819.
%K A007728 nonn,look
%O A007728 0,3
%A A007728 _N. J. A. Sloane_
%E A007728 More terms from _Vladeta Jovovic_, May 06 2004