This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007748 #24 Dec 16 2021 22:18:38 %S A007748 1,1,1,2,3,7,10,26,39,107,160,458,702,2058,3177,9498,14830,44947, %T A007748 70678,216598,342860,1059952,1686486,5251806,8393681,26297238, %U A007748 42187148,132856766,213828802,676398395,1091711076 %N A007748 Number of self-converse oriented trees with n nodes. %H A007748 R. Simion, <a href="http://dx.doi.org/10.1016/0012-365X(91)90061-6">Trees with 1-factors and oriented trees</a>, Discrete Math., 88 (1991), 93-104. %H A007748 R. Simion, <a href="/A005750/a005750.pdf">Trees with 1-factors and oriented trees</a>, Discrete Math., 88 (1981), 97. (Annotated scanned copy) %H A007748 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A007748 a(2n)=A000151(n). a(2n-1)=A005750(n). - _Christian G. Bower_, Dec 15 1999 %t A007748 max = 15; A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] * A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; a[n_] := A[n, 2]; A000151 = Table[a[n], {n, 1, max}]; etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; A005750 = Table[etr[a][n], {n, 0, max}] ; A007748 = Riffle[A005750, A000151] (* _Jean-François Alcover_, Jul 16 2015 *) %Y A007748 Cf. A000238. %K A007748 nonn,nice %O A007748 1,4 %A A007748 _N. J. A. Sloane_