This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007759 #19 Sep 08 2022 08:44:35 %S A007759 2,17,576,665857,886731088896,1572584048032918633353217, %T A007759 4946041176255201878775086487573351061418968498176, %U A007759 48926646634423881954586808839856694558492182258668537145547700898547222910968507268117381704646657 %N A007759 Knopfmacher expansion of sqrt(2): a(2n) = 2*(a(2n-1) + 1)^2 - 1, a(2n+1) = 2*(a(2n)^2 - 1). %H A007759 G. C. Greubel, <a href="/A007759/b007759.txt">Table of n, a(n) for n = 1..11</a> %H A007759 A. Knopfmacher and J. Knopfmacher, <a href="https://doi.org/10.1007/978-94-009-1910-5_24">An alternating product representation for real numbers</a>, in Applications of Fibonacci numbers, Vol. 3 (Kluwer 1990), pp. 209-216. %p A007759 a:= proc(n) option remember; %p A007759 if n=1 then 2 %p A007759 elif `mod`(n,2) = 0 then 2*(a(n-1) +1)^2 -1 %p A007759 else 2*(a(n-1)^2 -1) %p A007759 end if; end proc; %p A007759 seq(a(n), n = 1..9); # _G. C. Greubel_, Mar 04 2020 %t A007759 a[n_]:= a[n]= If[n==1, 2, If[EvenQ[n], 2*(a[n-1] +1)^2 -1, 2*a[n-1]^2 -2]]; Table[a[n], {n,9}] (* _G. C. Greubel_, Mar 04 2020 *) %o A007759 (PARI) a(n) = if (n==1, 2, if (n % 2, 2*a(n-1)^2 - 2, 2*(a(n-1)+1)^2 - 1)); \\ _Michel Marcus_, Feb 20 2019 %o A007759 (Magma) %o A007759 function a(n) %o A007759 if n eq 1 then return 2; %o A007759 elif n mod 2 eq 0 then return 2*(a(n-1) +1)^2 -1; %o A007759 else return 2*(a(n-1)^2 -1); %o A007759 end if; return a; end function; %o A007759 [a(n): n in [1..9]]; // _G. C. Greubel_, Mar 04 2020 %o A007759 (Sage) %o A007759 @CachedFunction %o A007759 def a(n): %o A007759 if (n==1): return 2 %o A007759 elif (n%2==0): return 2*(a(n-1) +1)^2 -1 %o A007759 else: return 2*(a(n-1)^2 -1) %o A007759 [a(n) for n in (1..9)] # _G. C. Greubel_, Mar 04 2020 %Y A007759 Cf. A002193 (sqrt(2)), A001601. %K A007759 nonn %O A007759 1,1 %A A007759 _Arnold Knopfmacher_ %E A007759 More terms from _Christian G. Bower_, Jan 06 2006