cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007782 Number of factors in the infinite word formed by the Kolakoski sequence A000002.

This page as a plain text file.
%I A007782 #19 Jul 03 2025 17:43:41
%S A007782 1,2,4,6,10,14,18,26,34,42,50,62,78,94,110,126,142,162,186,218,250,
%T A007782 282,314,346,378,410,446,486,534,590,654,718,782,846,910,974,1038,
%U A007782 1102,1166,1234,1302,1378,1458,1554,1658,1774,1898,2026,2154,2282,2410,2538,2666
%N A007782 Number of factors in the infinite word formed by the Kolakoski sequence A000002.
%C A007782 a(n) = number of different substrings of length n found in Kolakoski sequence A000002. It is conjectured that a(n) grows like n^(log(3)/log(3/2)).
%D A007782 M. Dekking: "What is the long range order in the Kolakoski sequence?" in: The Mathematics of Long-Range Aperiodic Order, ed. R. V. Moody, Kluwer, Dordrecht (1997), pp. 115-125.
%H A007782 D. Wilson, <a href="/A007782/b007782.txt">Table of n, a(n) for n = 0..100</a>.
%e A007782 For length 3 only the strings 112, 121, 211, 221, 212, 122 occur, so a(3) = 6. For length 4 only the 10 strings 1121, 1122, 1211, 1212, 1221, 2112, 2121, 2122, 2211, 2212 occur.
%t A007782 nMax = 52; A007782[m_] := A007782[m] = (kolak = {1, 2, 2}; For[n = 3, n <= m, n++, For[k = 1, k <= kolak[[n]], k++, AppendTo[ kolak, 1 + Mod[n - 1, 2]]]]; factors[n_] := Table[ kolak[[k ;; k + n - 1]], {k, 1, Length[kolak] - n + 1}]; Table[ factors[n] // Union // Length, {n, 0, nMax}]); A007782[nMax]; A007782[m = 2*nMax]; While[ A007782[m] != A007782[m/2], m = 2*m]; A007782[m] (* _Jean-François Alcover_, Jul 24 2013 *)
%Y A007782 Cf. A000002.
%K A007782 nonn,nice
%O A007782 0,2
%A A007782 Patricia Lamas (lamas(AT)math.uqam.ca)
%E A007782 Additional comments from Michael Baake (mbaake(AT)pion09.tphys.physik.uni-tuebingen.de), Feb 19 2001.