cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007807 A variation on Euclid: a(n)=g(n)-1, where g(0)=0, g(1)=1, g(n+1)=g(n)(g(n-1)+1).

This page as a plain text file.
%I A007807 #12 Jan 05 2025 19:51:34
%S A007807 0,0,1,3,11,59,779,47579,37159979,1768109008379,65702897157329640779,
%T A007807 116169884340604934905464739377179,
%U A007807 7632697963609645128663145969343357330533515068777579
%N A007807 A variation on Euclid: a(n)=g(n)-1, where g(0)=0, g(1)=1, g(n+1)=g(n)(g(n-1)+1).
%H A007807 M. E. Mays, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/25-3/mays.pdf">Iterating the division algorithm</a>, Fib. Quart., 25 (1987), 204-213.
%F A007807 a(n) = A005831(n) - 1 for all n>0. - _Michael Somos_, Jan 17 2015
%o A007807 (PARI) {a(n) = if( n<4, n==3, -1 + (1 + a(n-1)) * (2 + a(n-2)))}; /* _Michael Somos_, Jan 17 2015 */
%Y A007807 Cf. A005831.
%K A007807 nonn
%O A007807 1,4
%A A007807 mays(AT)math.wvu.edu (Mike Mays)