A007827 Number of homeomorphically irreducible (or series-reduced) trees with n pendant nodes, or continua with n non-cut points, or leaves.
1, 1, 1, 1, 2, 3, 7, 13, 32, 73, 190, 488, 1350, 3741, 10765, 31311, 92949, 278840, 847511, 2599071, 8044399, 25082609, 78758786, 248803504, 790411028, 2523668997, 8095146289, 26076714609, 84329102797, 273694746208
Offset: 0
References
- M. Cropper, J. Combin. Math. Combin. Comp., Vol. 24 (1997), 177-184.
- Joseph Felsenstein, Inferring Phylogenies. Sinauer Associates, Inc., 2004, p. 33 (Beware errors!).
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62.
- S. B. Nadler Jr., Continuum Theory, Academic Press.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- M. D. Hendy, C. H. C. Little, David Penny, Comparing trees with pendant vertices labelled, SIAM J. Appl. Math. 44 (5) (1984). See Table 1.
- Index entries for sequences related to trees
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Maple
A := series(1+(1+x-B)*B,x,30); # where B = g.f. for A000669; A007827 := n->coeff(A,x,n);
-
Mathematica
(* a9 = A000669 *) max = 29; a9[1] = 1; a9[n_] := (s = Series[1/(1 - x), {x, 0, n}]; Do[s = Series[s/(1 - x^k)^Coefficient[s, x^k], {x, 0, n}], {k, 2, n}]; Coefficient[s, x^n]/2); b[x_] := Sum[a9[n] x^n, {n, 1, max}]; gf[x_] := 1 + (1 + x - b[x])*b[x]; CoefficientList[ Series[gf[x], {x, 0, max}], x] (* Jean-François Alcover, Aug 14 2012 *)
Formula
G.f.: 1+(1+x-B(x))*B(x) where B(x) = x+x^2+2*x^3+5*x^4+12*x^5+33*x^6+90*x^7+... is g.f. for A000669.
Extensions
Corrected and extended by Christian G. Bower, Nov 15 1999
Comments