This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007837 #80 Mar 18 2022 13:05:52 %S A007837 1,1,1,4,5,16,82,169,541,2272,17966,44419,201830,802751,4897453, %T A007837 52275409,166257661,840363296,4321172134,24358246735,183351656650, %U A007837 2762567051857,10112898715063,62269802986835,343651382271526,2352104168848091,15649414071734847 %N A007837 Number of partitions of n-set with distinct block sizes. %C A007837 Conjecture: the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. Cf. A185895. - _Peter Bala_, Mar 17 2022 %H A007837 Alois P. Heinz, <a href="/A007837/b007837.txt">Table of n, a(n) for n = 0..700</a> %H A007837 Philippe Flajolet, Éric Fusy, Xavier Gourdon, Daniel Panario and Nicolas Pouyanne, <a href="http://arxiv.org/abs/math/0606370">A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics</a>, Fig. 3, arXiv:math/0606370 [math.CO], 2006. %H A007837 Knopfmacher, A., Odlyzko, A. M., Pittel, B., Richmond, L. B., Stark, D., Szekeres, G. and Wormald, N. C., <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v6i1r2">The asymptotic number of set partitions with unequal block sizes</a>, Electron. J. Combin., 6 (1999), no. 1, Research Paper 2, 36 pp. %H A007837 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %F A007837 E.g.f.: Product_{m >= 1} (1+x^m/m!). %F A007837 a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} (-d)*(-d!)^(-k/d) and a(0) = 1. - _Vladeta Jovovic_, Oct 13 2002 %F A007837 E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)). - _Ilya Gutkovskiy_, Jun 18 2018 %e A007837 From _Gus Wiseman_, Jul 13 2019: (Start) %e A007837 The a(1) = 1 through a(5) = 16 set partitions with distinct block sizes: %e A007837 {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}} %e A007837 {{1},{2,3}} {{1},{2,3,4}} {{1},{2,3,4,5}} %e A007837 {{1,2},{3}} {{1,2,3},{4}} {{1,2},{3,4,5}} %e A007837 {{1,3},{2}} {{1,2,4},{3}} {{1,2,3},{4,5}} %e A007837 {{1,3,4},{2}} {{1,2,3,4},{5}} %e A007837 {{1,2,3,5},{4}} %e A007837 {{1,2,4},{3,5}} %e A007837 {{1,2,4,5},{3}} %e A007837 {{1,2,5},{3,4}} %e A007837 {{1,3},{2,4,5}} %e A007837 {{1,3,4},{2,5}} %e A007837 {{1,3,4,5},{2}} %e A007837 {{1,3,5},{2,4}} %e A007837 {{1,4},{2,3,5}} %e A007837 {{1,4,5},{2,3}} %e A007837 {{1,5},{2,3,4}} %e A007837 (End) %p A007837 a:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d), %p A007837 d=numtheory[divisors](k))*(n-1)!/(n-k)!*a(n-k), k=1..n)) %p A007837 end: %p A007837 seq(a(n), n=0..30); # _Alois P. Heinz_, Sep 06 2008 %p A007837 # second Maple program: %p A007837 A007837 := proc(n) option remember; local k; `if`(n = 0, 1, %p A007837 add(binomial(n-1, k-1) * A182927(k) * A007837(n-k), k = 1..n)) end: %p A007837 seq(A007837(i),i=0..24); # _Peter Luschny_, Apr 25 2011 %t A007837 nn=20;p=Product[1+x^i/i!,{i,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[p,{x,0,nn}],x],1] (* _Geoffrey Critzer_, Sep 22 2012 *) %t A007837 a[0]=1; a[n_] := a[n] = Sum[(n-1)!/(n-k)!*DivisorSum[k, -#*(-#!)^(-k/#)&]* a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 23 2015, after _Vladeta Jovovic_ *) %o A007837 (PARI) {my(n=20); Vec(serlaplace(prod(k=1, n, (1+x^k/k!) + O(x*x^n))))} \\ _Andrew Howroyd_, Dec 21 2017 %Y A007837 Row sums of A131632 or A262072 or A262078 or A309992. %Y A007837 Cf. A000110, A005651, A007838, A032011, A035470, A038041, A178682, A265950, A271423, A275780, A326026, A326514, A326517, A326533. %Y A007837 Column k=0 of A327869. %K A007837 nonn %O A007837 0,4 %A A007837 _Arnold Knopfmacher_ %E A007837 More terms from _Christian G. Bower_ %E A007837 a(0)=1 prepended by _Alois P. Heinz_, Aug 29 2015