This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007852 #74 May 13 2025 22:29:47 %S A007852 1,2,7,29,131,625,3099,15818,82595,439259,2371632,12967707,71669167, %T A007852 399751019,2247488837,12723799989,72474333715,415046380767, %U A007852 2388355096446,13803034008095,80082677184820,466263828731640,2723428895205210,15954063529603565,93711351580424391 %N A007852 Number of antichains in rooted plane trees on n nodes. %C A007852 Setting both offsets to zero, this is the Catalan transform of A007317. - _R. J. Mathar_, Jun 29 2009 %C A007852 a(n) is also the cumulated sizes of admissible cuts of general rooted trees of size n. - _Antoine Genitrini_, Mar 14 2013 %C A007852 a(n) is the moment of order 2*n of the sum of two position operators in the weakly monotonne Fock space - _Anna Kula_, May 09 2025 %C A007852 a(n) is the moment of order 2*n of the measure with the density defined by g(x) = 1/(4*Pi) * (sqrt(sqrt(100-16x^2)-x^2-10) - sqrt(4-x^2)) if |x|<=2, g(x) = 1/(4*Pi) * sqrt((-2x^2-2|x|sqrt(4-x^2)+20) if 2 <= |x| <= 5/2 and g(x)=0 otherwise - _Anna Kula_, May 09 2025 %H A007852 O. Bodini, A. Genitrini and F. Peschanski, <a href="http://www-apr.lip6.fr/~genitrini/doc_ens/are/article1.pdf">Enumeration and Random Generation of Concurrent Computations</a> In proc. 23rd International Meeting on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA'12), Discrete Mathematics and Theoretical Computer Science, pp 83-96, 2012. %H A007852 O. Bodini, A. Genitrini and F. Peschanski, <a href="http://www-apr.lip6.fr/~pesch/datas/bogepe-pure-merge-13-preprint.pdf">A Quantitative Study of Pure Parallel Processes</a>, Preprint, 2013. %H A007852 O. Bodini, A. Genitrini, and F. Peschanski, <a href="http://arxiv.org/abs/1407.1873">A Quantitative Study of Pure Parallel Processes</a>, arXiv preprint arXiv:1407.1873 [cs.PL], 2014. %H A007852 G.-S. Cheon, H. Kim, and L. W. Shapiro, <a href="http://arxiv.org/abs/1410.1249">Mutation effects in ordered trees</a>, arXiv preprint arXiv:1410.1249 [math.CO], 2014. %H A007852 V. Crismale, M. E. Griseta, and J. Wysoczański, <a href="https://doi.org/10.1007/s10959-018-0846-9">Weakly Monotone Fock Space and Monotone Convolution of the Wigner Law</a>, J Theor Probab 33, 268-294,2020. %H A007852 Martin Klazar, <a href="http://dx.doi.org/10.1006/eujc.1995.0095">Twelve countings with rooted plane trees</a>, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740. %H A007852 Frank Ruskey, <a href="http://dx.doi.org/10.1137/0210011">Listing and Counting Subtrees of a Tree</a>, SIAM J. Computing, 10 (1981) 141-150. %H A007852 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %H A007852 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A007852 G.f.: A(z) = (1-B(z)-sqrt(1-5*z-B(z)))/2, where B(z) = (1-sqrt(1-4*z))/2. %F A007852 a(1) = 1 and for n > 1 a(n) = Sum_{j=1..n-1} (a(j)+b(j))*a(n-j), where b(n) = C(2*n-2, n-1)/n (Catalan number). %F A007852 Also REVERT[A(x)] = x + 2*x^2 + x^3*(A007440(x) (Reversion of Fibonacci). - _Olivier Gérard_, Jul 05 2001 %F A007852 a(n+1) = Sum_{k=0..n} A039599(n,k) * A000108(k). - _Philippe Deléham_, Mar 12 2007 %F A007852 P-recurrence: (-500*n+2000*n^3)*a(n)+(120-220*n-1380*n^2-920*n^3)*a(n+1)+(-1488-1626*n-387*n^2+21*n^3)*a(n+2)+(1088*n+1104+351*n^2+37*n^3)*a(n+3)+(-42*n^2-146*n-168-4*n^3)*a(n+4); a(0)=0; a(1)=1; a(2)=2; a(3)=7. - _Antoine Genitrini_, Mar 14 2013 %F A007852 a(n) ~ (25/4)^n / (sqrt(15*Pi) * n^(3/2)). - _Vaclav Kotesovec_, Mar 08 2014 %F A007852 a(n) = (Sum_{i=0..n} binomial(2*i+1,i)*binomial(2*n-1,n-i-1))/(2*n-1). - _Vladimir Kruchinin_, Jun 09 2014 %F A007852 1 + 1/z*A(z)^2 = 1 + z + 4*z^2 + 18*z^3 + 86*z^4 + ... is the o.g.f. for A153294. - _Peter Bala_, Jul 21 2015 %t A007852 Rest[CoefficientList[Series[(1-(1-Sqrt[1-4*x])/2-Sqrt[1-5*x-(1-Sqrt[1-4*x])/2])/2, {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Mar 08 2014 *) %o A007852 (Python) %o A007852 def a(n): %o A007852 l = [0,1,2,7] %o A007852 if n < 4: %o A007852 return l[n] %o A007852 for i in range(n-3): %o A007852 l[i%4] = ( (-500*i+2000*i**3)*l[i%4]+(120-220*i-1380*i**2-920*i**3)*l[(i+1)%4]+(-1488-1626*i-387*i**2+21*i**3)*l[(i+2)%4]+(1088*i+1104+351*i**2+37*i**3)*l[(i+3)%4] ) // (+42*i**2+146*i+168+4*i**3) %o A007852 return l[i%4] %o A007852 # _Antoine Genitrini_, Mar 14 2013 %o A007852 (PARI) %o A007852 N = 33; x = 'x + O('x^N); %o A007852 B = (1-sqrt(1-4*x))/2; %o A007852 gf = (1-B-sqrt(1-5*x-B))/2; %o A007852 v = Vec(gf) %o A007852 \\ _Joerg Arndt_, Mar 14 2013 %o A007852 (Maxima) %o A007852 a(n):=sum(binomial(2*i+1,i)*binomial(2*n-1,n-i-1),i,0,n)/((2*n-1)); /* _Vladimir Kruchinin_, Jun 09 2014 */ %Y A007852 Cf. A007440, A153294. %K A007852 nonn %O A007852 1,2 %A A007852 _Martin Klazar_, Mar 15 1996 %E A007852 More terms and formulas from _Frank Ruskey_, Nov 15 1997