This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007870 #74 Oct 13 2024 00:17:32 %S A007870 1,1,2,6,96,2880,9953280,100329062400,10651768002183168000, %T A007870 150283391703941024789299200000, %U A007870 9263795272057860957392207640004657152000000000,16027108137650009941734148595388542471170145479274004480000000000000 %N A007870 Determinant of character table of symmetric group S_n. %H A007870 Alois P. Heinz, <a href="/A007870/b007870.txt">Table of n, a(n) for n = 0..18</a> %H A007870 Amritanshu Prasad, <a href="https://doi.org/10.1017/CBO9781139976824">Symmetric Functions</a>, Chapter 5, Representation Theory: a Combinatorial Viewpoint, Cambridge Studies in Adv. Math. 147 (2014), p. 107. %H A007870 F. W. Schmidt and R. Simion, <a href="http://dx.doi.org/10.1016/0097-3165(84)90012-8">On a partition identity</a>, J. Combin. Theory, A 36 (1984), 249-252. %H A007870 D. Vaintrob, <a href="http://mathoverflow.net/questions/99271/">A product identity for partitions</a>, MathOverflow, June 2012. %F A007870 Product of all parts of all partitions of n. %F A007870 From _Gus Wiseman_, May 09 2019: (Start) %F A007870 a(n) = A003963(A325501(n)). %F A007870 A001222(a(n)) = A325536(n). %F A007870 A001221(a(n)) = A000720(n). %F A007870 (End) %e A007870 1 + x + 2*x^2 + 6*x^3 + 96*x^4 + 2880*x^5 + 9953280*x^6 + 100329062400*x^7 + ... %e A007870 The integer partitions of 4 are {(4), (3,1), (2,2), (2,1,1), (1,1,1,1)} with product 4*3*1*2*2*2*1*1*1*1*1*1 = 96. - _Gus Wiseman_, May 09 2019 %p A007870 b:= proc(n, i) option remember; `if`(n=0 or i=1, [1$2], ((f, g)-> %p A007870 [f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i)))) %p A007870 end: %p A007870 a:= n-> b(n$2)[2]: %p A007870 seq(a(n), n=0..12); # _Alois P. Heinz_, Jul 30 2013 %t A007870 Needs["Combinatorica`"]; Table[Times@@Flatten[Partitions[n]], {n, 10}] %t A007870 a[ n_] := If[n < 0, 0, Times @@ Flatten @ IntegerPartitions @ n] (* _Michael Somos_, Jun 11 2012 *) %t A007870 Table[Exp[Total[Map[Log, IntegerPartitions [n]], 2]], {n, 1, 25}] (* _Richard R. Forberg_, Dec 08 2014 *) %t A007870 b[n_, i_] := b[n, i] = If[n == 0, {1, 1}, Function[{f, g}, {f[[1]] + g[[1]], f[[2]]*g[[2]]*i^g[[1]]}][If[i < 2, {0, 1}, b[n, i - 1]], If[i > n, {0, 1}, b[n - i, i]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 12}] (* _Jean-François Alcover_, Aug 29 2016, after _Alois P. Heinz_ *) %o A007870 (GAP) List(List([0..11],n->Flat(Partitions(n))),Product); # _Muniru A Asiru_, Dec 21 2018 %o A007870 (Python) %o A007870 from sympy import prod %o A007870 from sympy.utilities.iterables import ordered_partitions %o A007870 a = lambda n: prod(map(prod, ordered_partitions(n))) if n > 0 else 1 %o A007870 print([a(n) for n in range(0, 12)]) # _Darío Clavijo_, Feb 22 2024 %Y A007870 Row-products of A302246 and A302247. %Y A007870 Cf. A000041, A000142, A006128, A006906, A066186, A066633, A086644, A325501, A325504, A325507, A325536. %Y A007870 Cf. A063073. %K A007870 nonn %O A007870 0,3 %A A007870 _Peter J. Cameron_, Götz Pfeiffer [ goetz(AT)dcs.st-and.ac.uk ]