cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008084 Coordination sequence T1 for Zeolite Code ACO, ASV, EDI, and THO.

This page as a plain text file.
%I A008084 #46 Feb 07 2024 09:00:49
%S A008084 1,4,9,19,35,52,72,100,131,163,201,244,290,340,393,451,515,580,648,
%T A008084 724,803,883,969,1060,1154,1252,1353,1459,1571,1684,1800,1924,2051,
%U A008084 2179,2313,2452,2594,2740,2889,3043,3203,3364,3528,3700,3875,4051,4233,4420
%N A008084 Coordination sequence T1 for Zeolite Code ACO, ASV, EDI, and THO.
%D A008084 W. M. Meier, D. H. Olson, and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996.
%H A008084 Vincenzo Librandi, <a href="/A008084/b008084.txt">Table of n, a(n) for n = 0..1000</a>
%H A008084 R. W. Grosse-Kunstleve, <a href="/A005897/a005897.html">Coordination Sequences and Encyclopedia of Integer Sequences</a>.
%H A008084 R. W. Grosse-Kunstleve, G. O. Brunner, and N. J. A. Sloane, <a href="http://neilsloane.com/doc/ac96cs/">Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites</a>, Acta Cryst., A52 (1996), pp. 879-889.
%H A008084 Sean A. Irvine, <a href="/A008000/a008000_1.pdf">Generating Functions for Coordination Sequences of Zeolites, after Grosse-Kunstleve, Brunner, and Sloane</a>.
%H A008084 International Zeolite Association, <a href="http://www.iza-structure.org/databases/">Database of Zeolite Structures</a>.
%H A008084 Reticular Chemistry Structure Resource, nets <a href="http://rcsr.net/nets/pcb">pcb</a>, <a href="http://rcsr.net/nets/pcb-b">pcb-b</a>, <a href="http://rcsr.net/nets/asv">asv</a>, <a href="http://rcsr.net/nets/edi">edi</a>, <a href="http://rcsr.net/nets/edi-c">edi-c</a>.
%H A008084 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,3,-3,2,-2,1).
%F A008084 For n > 1, a(n) = 2n^2 - 4n + 4 + p(n), with the 12-periodic sequence p(n) with period {0, 0, 0, -1, -1, 1, 0, -2, 0, 1, -1, -1}.
%F A008084 a(12*m+k) = 288*m^2 + 48*k*m + [ 2, 4, 9, 19, 35, 52, 72, 100, 131, 163, 201, 244 ], 0 <= k < 12. - _N. J. A. Sloane_
%F A008084 G.f.: -(x+1)^3*(x^4-x^3+3*x^2-x+1) / ((x-1)^3*(x^2+1)*(x^2+x+1)). - _Colin Barker_, Dec 12 2012
%t A008084 CoefficientList[Series[-(x + 1)^3 (x^4 - x^3 + 3 x^2 - x + 1)/((x - 1)^3 (x^2 + 1) (x^2 + x + 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 15 2013 *)
%K A008084 nonn,easy
%O A008084 0,2
%A A008084 _Ralf W. Grosse-Kunstleve_