This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008084 #46 Feb 07 2024 09:00:49 %S A008084 1,4,9,19,35,52,72,100,131,163,201,244,290,340,393,451,515,580,648, %T A008084 724,803,883,969,1060,1154,1252,1353,1459,1571,1684,1800,1924,2051, %U A008084 2179,2313,2452,2594,2740,2889,3043,3203,3364,3528,3700,3875,4051,4233,4420 %N A008084 Coordination sequence T1 for Zeolite Code ACO, ASV, EDI, and THO. %D A008084 W. M. Meier, D. H. Olson, and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996. %H A008084 Vincenzo Librandi, <a href="/A008084/b008084.txt">Table of n, a(n) for n = 0..1000</a> %H A008084 R. W. Grosse-Kunstleve, <a href="/A005897/a005897.html">Coordination Sequences and Encyclopedia of Integer Sequences</a>. %H A008084 R. W. Grosse-Kunstleve, G. O. Brunner, and N. J. A. Sloane, <a href="http://neilsloane.com/doc/ac96cs/">Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites</a>, Acta Cryst., A52 (1996), pp. 879-889. %H A008084 Sean A. Irvine, <a href="/A008000/a008000_1.pdf">Generating Functions for Coordination Sequences of Zeolites, after Grosse-Kunstleve, Brunner, and Sloane</a>. %H A008084 International Zeolite Association, <a href="http://www.iza-structure.org/databases/">Database of Zeolite Structures</a>. %H A008084 Reticular Chemistry Structure Resource, nets <a href="http://rcsr.net/nets/pcb">pcb</a>, <a href="http://rcsr.net/nets/pcb-b">pcb-b</a>, <a href="http://rcsr.net/nets/asv">asv</a>, <a href="http://rcsr.net/nets/edi">edi</a>, <a href="http://rcsr.net/nets/edi-c">edi-c</a>. %H A008084 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,3,-3,2,-2,1). %F A008084 For n > 1, a(n) = 2n^2 - 4n + 4 + p(n), with the 12-periodic sequence p(n) with period {0, 0, 0, -1, -1, 1, 0, -2, 0, 1, -1, -1}. %F A008084 a(12*m+k) = 288*m^2 + 48*k*m + [ 2, 4, 9, 19, 35, 52, 72, 100, 131, 163, 201, 244 ], 0 <= k < 12. - _N. J. A. Sloane_ %F A008084 G.f.: -(x+1)^3*(x^4-x^3+3*x^2-x+1) / ((x-1)^3*(x^2+1)*(x^2+x+1)). - _Colin Barker_, Dec 12 2012 %t A008084 CoefficientList[Series[-(x + 1)^3 (x^4 - x^3 + 3 x^2 - x + 1)/((x - 1)^3 (x^2 + 1) (x^2 + x + 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 15 2013 *) %K A008084 nonn,easy %O A008084 0,2 %A A008084 _Ralf W. Grosse-Kunstleve_