cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008277 Triangle of Stirling numbers of the second kind, S2(n,k), n >= 1, 1 <= k <= n.

This page as a plain text file.
%I A008277 #630 Aug 27 2025 00:56:56
%S A008277 1,1,1,1,3,1,1,7,6,1,1,15,25,10,1,1,31,90,65,15,1,1,63,301,350,140,21,
%T A008277 1,1,127,966,1701,1050,266,28,1,1,255,3025,7770,6951,2646,462,36,1,1,
%U A008277 511,9330,34105,42525,22827,5880,750,45,1,1,1023,28501,145750,246730,179487,63987,11880,1155,55,1
%N A008277 Triangle of Stirling numbers of the second kind, S2(n,k), n >= 1, 1 <= k <= n.
%C A008277 Also known as Stirling set numbers and written {n, k}.
%C A008277 S2(n,k) counts partitions of an n-set into k nonempty subsets.
%C A008277 From _Manfred Boergens_, Apr 07 2025: (Start)
%C A008277 With regard to the preceding comment:
%C A008277 For disjoint collections of subsets see A256894.
%C A008277 For arbitrary collections of subsets see A163353.
%C A008277 For arbitrary collections of nonempty subsets see A055154. (End)
%C A008277 Triangle S2(n,k), 1 <= k <= n, read by rows, given by [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is Deléham's operator defined in A084938.
%C A008277 Number of partitions of {1, ..., n+1} into k+1 nonempty subsets of nonconsecutive integers, including the partition 1|2|...|n+1 if n=k. E.g., S2(3,2)=3 since the number of partitions of {1,2,3,4} into three subsets of nonconsecutive integers is 3, i.e., 13|2|4, 14|2|3, 1|24|3. - _Augustine O. Munagi_, Mar 20 2005
%C A008277 Draw n cards (with replacement) from a deck of k cards. Let prob(n,k) be the probability that each card was drawn at least once. Then prob(n,k) = S2(n,k)*k!/k^n (see A090582). - _Rainer Rosenthal_, Oct 22 2005
%C A008277 Define f_1(x), f_2(x), ..., such that f_1(x)=e^x and for n = 2, 3, ..., f_{n+1}(x) = (d/dx)(x*f_n(x)). Then f_n(x) = e^x*Sum_{k=1..n} S2(n,k)*x^(k-1). - _Milan Janjic_, May 30 2008
%C A008277 From _Peter Bala_, Oct 03 2008: (Start)
%C A008277 For tables of restricted Stirling numbers of the second kind see A143494 - A143496.
%C A008277 S2(n,k) gives the number of 'patterns' of words of length n using k distinct symbols - see [Cooper & Kennedy] for an exact definition of the term 'pattern'. As an example, the words AADCBB and XXEGTT, both of length 6, have the same pattern of letters. The five patterns of words of length 3 are AAA, AAB, ABA, BAA and ABC giving row 3 of this table as (1,3,1).
%C A008277 Equivalently, S2(n,k) gives the number of sequences of positive integers (N_1,...,N_n) of length n, with k distinct entries, such that N_1 = 1 and N_(i+1) <= 1 + max{j = 1..i} N_j for i >= 1 (restricted growth functions). For example, Stirling(4,2) = 7 since the sequences of length 4 having 2 distinct entries that satisfy the conditions are (1,1,1,2), (1,1,2,1), (1,2,1,1), (1,1,2,2), (1,2,2,2), (1,2,2,1) and (1,2,1,2).
%C A008277 (End)
%C A008277 Number of combinations of subsets in the plane. - _Mats Granvik_, Jan 13 2009
%C A008277 S2(n+1,k+1) is the number of size k collections of pairwise disjoint, nonempty subsets of [n]. For example: S2(4,3)=6 because there are six such collections of subsets of [3] that have cardinality two: {(1)(23)},{(12)(3)}, {(13)(2)}, {(1)(2)}, {(1)(3)}, {(2)(3)}. - _Geoffrey Critzer_, Apr 06 2009
%C A008277 Consider a set of A000217(n) balls of n colors in which, for each integer k = 1 to n, exactly one color appears in the set a total of k times. (Each ball has exactly one color and is indistinguishable from other balls of the same color.) a(n+1, k+1) equals the number of ways to choose 0 or more balls of each color in such a way that exactly (n-k) colors are chosen at least once, and no two colors are chosen the same positive number of times. - _Matthew Vandermast_, Nov 22 2010
%C A008277 S2(n,k) is the number of monotonic-labeled forests on n vertices with exactly k rooted trees, each of height one or less. See link "Counting forests with Stirling and Bell numbers" below. - _Dennis P. Walsh_, Nov 16 2011
%C A008277 If D is the operator d/dx, and E the operator xd/dx, Stirling numbers are given by:  E^n = Sum_{k=1..n} S2(n,k) * x^k*D^k. - Hyunwoo Jang, Dec 13 2011
%C A008277 The Stirling polynomials of the second kind (a.k.a. the Bell / Touchard polynomials) are the umbral compositional inverses of the falling factorials (a.k.a. the Pochhammer symbol or Stirling polynomials of the first kind), i.e., binomial(Bell(.,x),n) = x^n/n! (cf. Copeland's 2007 formulas), implying binomial(xD,n) = binomial(Bell(.,:xD:),n) = :xD:^n/n! where D = d/dx and :xD:^n = x^n*D^n. - _Tom Copeland_, Apr 17 2014
%C A008277 S2(n,k) is the number of ways to nest n matryoshkas (Russian nesting dolls) so that exactly k matryoshkas are not contained in any other matryoshka. - _Carlo Sanna_, Oct 17 2015
%C A008277 The row polynomials R(n, x) = Sum_{k=1..n} S2(n, k)*x^k appear in the numerator of the e.g.f. of n-th powers, E(n, x) = Sum_{m>=0} m^n*x^m/m!, as E(n, x) = exp(x)*x*R(n, x), for n >= 1. - _Wolfdieter Lang_, Apr 02 2017
%C A008277 With offsets 0 for n and k this is the Sheffer product matrix A007318*A048993 denoted by (exp(t), (exp(t) - 1)) with e.g.f. exp(t)*exp(x*(exp(t) - 1)). - _Wolfdieter Lang_, Jun 20 2017
%C A008277 Number of words on k+1 unlabeled letters of length n+1 with no repeated letters. - _Thomas Anton_, Mar 14 2019
%C A008277 Also coefficients of moments of Poisson distribution about the origin expressed as polynomials in lambda. [Haight] (see also A331155). - _N. J. A. Sloane_, Jan 14 2020
%C A008277 k!*S2(n,k) is the number of surjections from an n-element set to a k-element set. - _Jianing Song_, Jun 01 2022
%D A008277 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
%D A008277 A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 103ff.
%D A008277 B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
%D A008277 G. Boole, Finite Differences, 5th ed. New York, NY: Chelsea, 1970.
%D A008277 C. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, 2002, Theorem 8.11, pp. 298-299.
%D A008277 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 310.
%D A008277 J. H. Conway and R. K. Guy, The Book of Numbers, Springer, p. 92.
%D A008277 F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
%D A008277 S.N. Elaydi, An Introduction to Difference Equations, 3rd ed. Springer, 2005.
%D A008277 H. H. Goldstine, A History of Numerical Analysis, Springer-Verlag, 1977; Section 2.7.
%D A008277 R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 244.
%D A008277 Frank Avery Haight, Handbook of the Poisson distribution, John Wiley, 1967. See pages 6,7.
%D A008277 A. D. Korshunov, Asymptotic behavior of Stirling numbers of the second kind. (Russian) Metody Diskret. Analiz. No. 39 (1983), 24-41.
%D A008277 E. Kuz'min and A. I. Shirshov: On the number e, pp. 111-119, eq.(6), in: Kvant Selecta: Algebra and Analysis, I, ed. S. Tabachnikov, Am.Math.Soc., 1999, p. 116, eq. (11).
%D A008277 J. Riordan, An Introduction to Combinatorial Analysis, p. 48.
%D A008277 J. Stirling, The Differential Method, London, 1749; see p. 7.
%H A008277 T. D. Noe, <a href="/A008277/b008277.txt">First 100 rows, flattened</a>
%H A008277 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A008277 V. E. Adler, <a href="http://arxiv.org/abs/1510.02900">Set partitions and integrable hierarchies</a>, arXiv:1510.02900 [nlin.SI], 2015.
%H A008277 Tewodros Amdeberhan, Valerio de Angelis, and Victor H. Moll, <a href="http://www.tulane.edu/~vhm/papers_html/final-bell.pdf">Complementary Bell numbers: arithmetical properties and Wilf's conjecture</a>, Advances in Combinatorics (2013), pp. 23-56.
%H A008277 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, pp. 358-360
%H A008277 Joerg Arndt and N. J. A. Sloane, <a href="/A278984/a278984.txt">Counting Words that are in "Standard Order"</a>
%H A008277 J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, <a href="http://arxiv.org/abs/1307.2010">Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure</a>, arXiv:1307.2010 [math.CO], 2013-2014.
%H A008277 J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, <a href="http://arxiv.org/abs/1307.5624">Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications</a>, arXiv:1307.5624 [math.CO], 2013.
%H A008277 Paul Barry, <a href="http://arxiv.org/abs/1105.3044">Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays</a>, arXiv:1105.3044 [math.CO], 2011.
%H A008277 H. Belbachir, M. Rahmani, and B. Sury, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Rahmani/rahmani3.html">Sums Involving Moments of Reciprocals of Binomial Coefficients</a>, J. Int. Seq. 14 (2011) #11.6.6.
%H A008277 Hacene Belbachir and Mourad Rahmani, <a href="http://www.emis.de/journals/JIS/VOL15/Sury/sury42.html">Alternating Sums of the Reciprocals of Binomial Coefficients</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.2.8.
%H A008277 Edward A. Bender, <a href="https://doi.org/10.1016/0097-3165(73)90038-1">Central and local limit theorems applied to asymptotic enumeration</a> Journal of Combinatorial Theory, Series A, 15(1) (1973), 91-111. See Example 5.4.
%H A008277 Moussa Benoumhani, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Benoumhani/benoumhani11.html">The Number of Topologies on a Finite Set</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
%H A008277 Beáta Bényi and Péter Hajnal, <a href="https://arxiv.org/abs/1804.01868">Poly-Bernoulli Numbers and Eulerian Numbers</a>, arXiv:1804.01868 [math.CO], 2018.
%H A008277 P. Blasiak, K. A. Penson, and A. I. Solomon, <a href="http://arXiv.org/abs/quant-ph/0212072">The Boson Normal Ordering Problem and Generalized Bell Numbers</a>, arXiv:quant-ph/0212072, 2002.
%H A008277 P. Blasiak, K. A. Penson, and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004.
%H A008277 W. E. Bleick and Peter C. C. Wang, <a href="http://dx.doi.org/10.1090/S0002-9939-1974-0330867-1">Asymptotics of Stirling numbers of the second kind</a>, Proc. Amer. Math. Soc. 42 (1974), 575-580.
%H A008277 W. E. Bleick and Peter C. C. Wang, <a href="http://dx.doi.org/10.1090/S0002-9939-1975-0401490-6">Erratum to: "Asymptotics of Stirling numbers of the second kind" (Proc. Amer. Math. Soc. {42} (1974), 575-580)</a>, Proc. Amer. Math. Soc. 48 (1975), 518.
%H A008277 B. A. Bondarenko, <a href="https://www.fq.math.ca/pascal.html">Generalized Pascal Triangles and Pyramids</a>, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 42.
%H A008277 Khristo N. Boyadzhiev, <a href="https://arxiv.org/abs/1806.09468">Close encounters with the Stirling numbers of the second kind</a>, arXiv:1806.09468 [math.HO], 2018.
%H A008277 S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, Yuxuan (Susan) Wang, and Juliet Whidden, <a href="https://arxiv.org/abs/2401.06937">Unit interval parking functions and the r-Fubini numbers</a>, arXiv:2401.06937 [math.CO], 2024. See page 8.
%H A008277 Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou, <a href="http://arxiv.org/abs/1505.03474">State complexity of catenation combined with a boolean operation: a unified approach</a>, arXiv:1505.03474 [cs.FL], 2015.
%H A008277 J. L. Cereceda, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Cereceda/cereceda2.html">Generalized Akiyama-Tanigawa Algorithm for Hypersums of Powers of Integers</a>, J. Int. Seq. 16 (2013) #13.3.2.
%H A008277 Raphaël Cerf and Joseba Dalmau, <a href="https://arxiv.org/abs/1609.05738">The quasispecies distribution</a>, arXiv:1609.05738 [q-bio.PE], 2016.
%H A008277 Gi-Sang Cheon and Jin-Soo Kim, <a href="https://doi.org/10.1016/S0024-3795(01)00234-8">Stirling matrix via Pascal matrix</a>, Lin. Alg. Appl. 329 (1-3) (2001) 49-59
%H A008277 Sarthak Chimni and Ramin Takloo-Bighash, <a href="https://arxiv.org/abs/1812.09564">Counting subrings of Zn of non-zero co-rank</a>, arXiv:1812.09564 [math.NT], 2018.
%H A008277 C. Cooper and R. E. Kennedy, <a href="http://cs.ucmo.edu/~cnc8851/articles/pasnsk.pdf">Patterns, automata and Stirling numbers of the second kind</a>, Mathematics and Computer Education Journal, 26 (1992), 120-124.
%H A008277 T. Copeland, <a href="https://tcjpn.wordpress.com/2020/08/11/euler-bernoulli-worpitzky-identities/">Reciprocity and Umbral Witchcraft: An Eve with Stirling, Bernoulli, Archimedes, Euler, Laguerre, and Worpitzky</a>, 2020.
%H A008277 T. Copeland's Shadows of Simplicity, <a href="http://tcjpn.wordpress.com/2015/08/23/a-class-of-differential-operators-and-the-stirling-numbers/">A Class of Differential Operators and the Stirling Numbers</a>,2015; <a href="http://tcjpn.wordpress.com/2015/12/21/generators-inversion-and-matrix-binomial-and-integral-transforms/">Generators, Inversion, and Matrix, Binomial, and Integral Transforms</a>, 2015; <a href="http://tcjpn.wordpress.com/2011/11/16/a-generalized-dobinski-relation-and-the-confluent-hypergeometric-fcts/">The Inverse Mellin Transform, Bell Polynomials, a Generalized Dobinski Relation, and the Confluent Hypergeometric Functions</a>, 2011; <a href="http://tcjpn.wordpress.com/2008/06/12/mathemagical-forests/">Mathemagical Forests</a>, 2008; and <a href="http://tcjpn.wordpress.com/2010/12/28/14/">Addendum to "Mathemagical Forests"</a>, 2010.
%H A008277 R. M. Dickau, <a href="http://mathforum.org/advanced/robertd/stirling2.html">Stirling numbers of the second kind</a>
%H A008277 A. J. Dobson, <a href="https://doi.org/10.1016/S0021-9800(68)80060-2">A note on Stirling numbers of the second kind</a>, Journal of Combinatorial Theory 5.2 (1968): 212-214.
%H A008277 Tomislav Došlic and Darko Veljan, <a href="http://dx.doi.org/10.1016/j.disc.2007.04.066">Logarithmic behavior of some combinatorial sequences</a>, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019)
%H A008277 G. Duchamp, K. A. Penson, A. I. Solomon, A. Horzela and P. Blasiak, <a href="http://arXiv.org/abs/quant-ph/0401126">One-parameter groups and combinatorial physics</a>, arXiv:quant-ph/0401126, 2004.
%H A008277 Askar Dzhumadil’daev and Damir Yeliussizov, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p10">Walks, partitions, and normal ordering</a>, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
%H A008277 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/St000105/">The number of blocks in the set partition</a>
%H A008277 Ghislain R. Franssens, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Franssens/franssens13.html">On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
%H A008277 M. L. Glasser, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Glasser/glasser2.html">A Generalized Apery Series</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.4.3.
%H A008277 Bill Gosper, <a href="/A008277/a008277.png">Colored illustrations of triangle of Stirling numbers of second kind read mod 2, 3, 4, 5, 6, 7</a>
%H A008277 M. Griffiths, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Griffiths2/griffiths17.html">Remodified Bessel Functions via Coincidences and Near Coincidences</a>, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.
%H A008277 M. Griffiths, <a href="http://www.jstor.org/stable/10.5951/mathteacher.106.4.0313">Close Encounters with Stirling Numbers of the Second Kind</a>, The Mathematics Teacher, Vol. 106, No. 4, November 2012, pp. 313-317.
%H A008277 M. Griffiths and I. Mezo, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Griffiths/griffiths11.html">A generalization of Stirling Numbers of the Second Kind via a special multiset</a>, JIS 13 (2010) #10.2.5
%H A008277 J. Gubeladze and J. Love, <a href="http://arxiv.org/abs/1304.3775">Vertex maps between simplices, cubes, and crosspolytopes</a>, arXiv:1304.3775 [math.CO], 2013.
%H A008277 L. C. Hsu, <a href="http://dx.doi.org/10.1214/aoms/1177730254">Note on an asymptotic expansion of the n-th difference of zero</a>, Ann. Math. Statistics 19 (1948), 273-277.
%H A008277 Yoshinari Inaba, <a href="http://www.emis.de/journals/JIS/VOL8/Inaba/inaba301.html">Hyper-Sums of Powers of Integers and the Akiyama-Tanigawa Matrix</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.7.
%H A008277 Wayne A. Johnson, <a href="https://arxiv.org/abs/1804.04943">Exponential Hilbert series of equivariant embeddings</a>, arXiv:1804.04943 [math.RT], 2018.
%H A008277 Matthieu Josuat-Verges, <a href="http://igm.univ-mlv.fr/~josuatv/files/josuat-qstirling.pdf">A q-analog of Schläfli and Gould identities on Stirling numbers</a>, Preprint, 2016; also arXiv:1610.02965 [math.CO], 2016.
%H A008277 Charles Knessl and Joseph B. Keller, <a href="http://dx.doi.org/10.1002/sapm199184143">Stirling number asymptotics from recursion equations using the ray method</a>, Stud. Appl. Math. 84 (1991), no. 1, 43-56.
%H A008277 Nate Kube and Frank Ruskey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Ruskey/ruskey99.html">Sequences That Satisfy a(n-a(n))=0</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
%H A008277 D. E. Knuth, <a href="http://arxiv.org/abs/math/9207221">Convolution polynomials</a>, The Mathematica J., 2 (1992), 67-78.
%H A008277 Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H A008277 Elliott H. Lieb, <a href="https://doi.org/10.1016/S0021-9800(68)80057-2">Concavity properties and a generating function for Stirling numbers</a>, Journal of Combinatorial Theory, Vol. 5, No. 2 (1968), pp. 203-206.
%H A008277 Shi-Mei Ma, <a href="http://arxiv.org/abs/1208.3104">Some combinatorial sequences associated with context-free grammars</a>, arXiv:1208.3104v2 [math.CO], 2012.
%H A008277 Shi-Mei Ma, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i1p11">A family of two-variable derivative polynomials for tangent and secant</a>, El J. Combinat. 20 (1) (2013) P11
%H A008277 S.-M. Ma, Toufik Mansour, and Matthias Schork. <a href="http://arxiv.org/abs/1308.0169">Normal ordering problem and the extensions of the Stirling grammar</a>, arXiv:1308.0169 [math.CO], 2013.
%H A008277 M. M. Mangontarum and J. Katriel, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Mangontarum/mango2.html">On q-Boson Operators and q-Analogues of the r-Whitney and r-Dowling Numbers</a>, J. Int. Seq. 18 (2015) 15.9.8.
%H A008277 T. Manneville and V. Pilaud, <a href="http://arxiv.org/abs/1501.07152">Compatibility fans for graphical nested complexes</a>, arXiv:1501.07152 [math.CO], 2015.
%H A008277 Toufik Mansour, A. Munagi, and Mark Shattuck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Mansour/mansour4.html">Recurrence Relations and Two-Dimensional Set Partitions </a>, J. Int. Seq. 14 (2011) # 11.4.1
%H A008277 Toufik Mansour and Mark Shattuck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Shattuck/shattuck3.html">Counting Peaks and Valleys in a Partition of a Set</a>, J. Int. Seq. 13 (2010), 10.6.8.
%H A008277 Toufik Mansour, Matthias Schork and Mark Shattuck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Schork/schork2.html">The Generalized Stirling and Bell Numbers Revisited</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
%H A008277 Richard J. Mathar, <a href="https://arxiv.org/abs/1903.12477">2-regular Digraphs of the Lovelock Lagrangian</a>, arXiv:1903.12477 [math.GM], 2019.
%H A008277 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/a/5089097/929945">Symmetric (under the swapping) recursions for Stirling numbers of both kinds</a>, Aug 10 2025.
%H A008277 Nelma Moreira and Rogerio Reis, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Moreira/moreira8.html">On the Density of Languages Representing Finite Set Partitions</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
%H A008277 T. S. Motzkin, <a href="/A000262/a000262.pdf">Sorting numbers for cylinders and other classification numbers</a>, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
%H A008277 A. O. Munagi, <a href="http://dx.doi.org/10.1155/IJMMS.2005.215">k-Complementing Subsets of Nonnegative Integers</a>, International Journal of Mathematics and Mathematical Sciences, 2005:2 (2005), 215-224.
%H A008277 Emanuele Munarini, <a href="https://doi.org/10.2298/AADM180226017M">Combinatorial identities involving the central coefficients of a Sheffer matrix</a>, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
%H A008277 Norihiro Nakashima and Shuhei Tsujie, <a href="https://arxiv.org/abs/1904.09748">Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species</a>, arXiv:1904.09748 [math.CO], 2019.
%H A008277 G. Nemes, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Nemes/nemes2.html">On the Coefficients of the Asymptotic Expansion of n!</a>, J. Int. Seq. 13 (2010), 10.6.6.
%H A008277 A. F. Neto, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Neto/neto4.html">Higher Order Derivatives of Trigonometric Functions, Stirling Numbers of the Second Kind, and Zeon Algebra</a>, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.3.
%H A008277 Arthur Nunge, <a href="https://arxiv.org/abs/1805.01797">Eulerian polynomials on segmented permutations</a>, arXiv:1805.01797 [math.CO], 2018.
%H A008277 OEIS Wiki, <a href="http://oeis.org/wiki/Sorting_numbers">Sorting numbers</a>
%H A008277 Yassine Otmani, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Otmani/otmani10.html">The 2-Pascal Triangle and a Related Riordan Array</a>, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 2.
%H A008277 K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, <a href="http://arXiv.org/abs/quant-ph/0312202">Hierarchical Dobinski-type relations via substitution and the moment problem</a>, arXiv:quant-ph/0312202, 2003.
%H A008277 K. A. Penson, P. Blasiak, A. Horzela, G. H. E. Duchamp, and A. I. Solomon, <a href="http://arxiv.org/abs/0904.0369">Laguerre-type derivatives: Dobinski relations and combinatorial identities</a>, J. Math. Phys. vol. 50, 083512 (2009)
%H A008277 Mathias Pétréolle and Alan D. Sokal, <a href="https://arxiv.org/abs/1907.02645">Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions</a>, arXiv:1907.02645 [math.CO], 2019.
%H A008277 Fedor Petrov, <a href="https://mathoverflow.net/a/488518/231922">Recursion for n-th row of Stirling numbers of the second kind independently of other rows</a>, answer to question on MathOverflow (2025).
%H A008277 C. J. Pita Ruiz V., <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Pita/pita19.html">Some Number Arrays Related to Pascal and Lucas Triangles</a>, J. Int. Seq. 16 (2013) #13.5.7
%H A008277 Feng Qi, <a href="http://arxiv.org/abs/1402.2361">An Explicit Formula for Bell Numbers in Terms of Stirling Numbers and Hypergeometric Functions</a>, arXiv:1402.2361 [math.CO], 2014.
%H A008277 S. Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/NoteBooks/NoteBook2/chapterIII/page4.htm">Notebook entry</a>
%H A008277 René Rietz, <a href="https://opus4.kobv.de">Optimization of Network Intrusion Detection Processes</a>, 2018.
%H A008277 G. Rzadkowski, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Rzadkowski/rzadkowski3.html">Two formulas for Successive Derivatives and Their Applications</a>, JIS 12 (2009) 09.8.2
%H A008277 Benjamin Schreyer, <a href="https://arxiv.org/abs/2409.03799">Rigged Horse Numbers and their Modular Periodicity</a>, arXiv:2409.03799 [math.CO], 2024. See p. 12.
%H A008277 Raymond Scurr and Gloria Olive, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00011-9">Stirling numbers revisited</a>, Discrete Math. 189 (1998), no. 1-3, 209--219. MR1637761 (99d:11019).
%H A008277 Mark Shattuck, <a href="https://www.researchgate.net/publication/269168303_Combinatorial_proofs_of_some_Stirling_number_formulas">Combinatorial proofs of some Stirling number formulas</a>,  Preprint (ResearchGate), 2014.
%H A008277 Mark Shattuck, <a href="http://dx.doi.org/10.1515/puma-2015-0009">Combinatorial proofs of some Stirling number formulas</a>, Pure Mathematics and Applications, Volume 25, Issue 1 (Sep 2015).
%H A008277 Mark Shattuck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Shattuck/sha27.html">Combinatorial Proofs of Some Stirling Number Convolution Formulas</a>, J. Int. Seq., Vol. 25 (2022), Article 22.2.2.
%H A008277 John K. Sikora, <a href="https://arxiv.org/abs/1806.00887">On Calculating the Coefficients of a Polynomial Generated Sequence Using the Worpitzky Number Triangles</a>, arXiv:1806.00887 [math.NT], 2018.
%H A008277 A. I. Solomon, P. Blasiak, G. Duchamp, A. Horzela, and K. A. Penson, <a href="http://arXiv.org/abs/quant-ph/0409082">Partition functions and graphs: A combinatorial approach</a>, arXiv:quant-ph/0409082, 2004.
%H A008277 M. Z. Spivey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Spivey/spivey31.html">On Solutions to a General Combinatorial Recurrence</a>, J. Int. Seq. 14 (2011) # 11.9.7.
%H A008277 Jacob Sprittulla, <a href="https://arxiv.org/abs/2109.12705">The ordered Bell numbers as weighted sums of odd or even Stirling numbers of the second kind</a>, arXiv:2109.12705 [math.CO], 2021.
%H A008277 N. M. Temme, <a href="http://oai.cwi.nl/oai/asset/2304/2304A.pdf">Asymptotic estimates of Stirling numbers</a>, Stud. Appl. Math. 89 (1993), no. 3, 233-243.
%H A008277 A. N. Timashev, <a href="http://dx.doi.org/10.4213/dm440">On asymptotic expansions of Stirling numbers of the first and second kinds</a>. (Russian) Diskret. Mat. 10 (1998), no. 3,148-159 translation in Discrete Math. Appl. 8 (1998), no. 5, 533-544.
%H A008277 Michael Torpey, <a href="https://doi.org/10.17630/10023-17350">Semigroup congruences: computational techniques and theoretical applications</a>, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).
%H A008277 A. H. Voigt, <a href="/A000918/a000918.pdf">Theorie der Zahlenreihen und der Reihengleichungen</a>, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
%H A008277 Dennis Walsh, <a href="http://frank.mtsu.edu/~dwalsh/STIRFORT.pdf">Counting forests with Stirling and Bell numbers</a>
%H A008277 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DifferentialOperator.html">Differential Operator</a> and <a href="https://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html">Stirling Number of the Second Kind</a>
%H A008277 Thomas Wieder, The number of certain k-combinations of an n-set, <a href="http://www.math.nthu.edu.tw/~amen/">Applied Mathematics Electronic Notes</a>, vol. 8 (2008).
%H A008277 H. S. Wilf, <a href="http://www.math.upenn.edu/~wilf/DownldGF.html">Generatingfunctionology</a>, 2nd edn., Academic Press, NY, 1994, pp. 17ff, 105ff.
%H A008277 M. C. Wolf, <a href="http://dx.doi.org/10.1215/S0012-7094-36-00253-3">Symmetric functions for non-commutative elements</a>, Duke Math. J., 2 (1936), 626-637.
%H A008277 <a href="/index/Cor#core">Index entries for "core" sequences</a>
%F A008277 S2(n, k) = k*S2(n-1, k) + S2(n-1, k-1), n > 1. S2(1, k) = 0, k > 1. S2(1, 1) = 1.
%F A008277 E.g.f.: A(x, y) = e^(y*e^x-y). E.g.f. for m-th column: (e^x-1)^m/m!.
%F A008277 S2(n, k) = (1/k!) * Sum_{i=0..k} (-1)^(k-i)*binomial(k, i)*i^n.
%F A008277 Row sums: Bell number A000110(n) = Sum_{k=1..n} S2(n, k), n>0.
%F A008277 S(n, k) = Sum (i_1*i_2*...*i_(n-k)) summed over all (n-k)-combinations {i_1, i_2, ..., i_k} with repetitions of the numbers {1, 2, ..., k}. Also S(n, k) = Sum (1^(r_1)*2^(r_2)*...* k^(r_k)) summed over integers r_j >= 0, for j=1..k, with Sum{j=1..k} r_j = n-k. [Charalambides]. - _Wolfdieter Lang_, Aug 15 2019.
%F A008277 A019538(n, k) = k! * S2(n, k).
%F A008277 A028248(n, k) = (k-1)! * S2(n, k).
%F A008277 For asymptotics see Hsu (1948), among other sources.
%F A008277 Sum_{n>=0} S2(n, k)*x^n = x^k/((1-x)(1-2x)(1-3x)...(1-kx)).
%F A008277 Let P(n) = the number of integer partitions of n (A000041), p(i) = the number of parts of the i-th partition of n, d(i) = the number of distinct parts of the i-th partition of n, p(j, i) = the j-th part of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, and Sum_{i=1..P(n), p(i)=m} = sum running from i=1 to i=P(n) but taking only partitions with p(i)=m parts into account. Then S2(n, m) = Sum_{i=1..P(n), p(i)=m} n!/(Product_{j=1..p(i)} p(i, j)!) * 1/(Product_{j=1..d(i)} m(i, j)!). For example, S2(6, 3) = 90 because n=6 has the following partitions with m=3 parts: (114), (123), (222). Their complexions are: (114): 6!/(1!*1!*4!) * 1/(2!*1!) = 15, (123): 6!/(1!*2!*3!) * 1/(1!*1!*1!) = 60, (222): 6!/(2!*2!*2!) * 1/(3!) = 15. The sum of the complexions is 15+60+15 = 90 = S2(6, 3). - _Thomas Wieder_, Jun 02 2005
%F A008277 Sum_{k=1..n} k*S2(n,k) = B(n+1)-B(n), where B(q) are the Bell numbers (A000110). - _Emeric Deutsch_, Nov 01 2006
%F A008277 Recurrence: S2(n+1,k) = Sum_{i=0..n} binomial(n,i)*S2(i,k-1). With the starting conditions S2(n,k) = 1 for n = 0 or k = 1 and S2(n,k) = 0 for k = 0 we have the closely related recurrence S2(n,k) = Sum_{i=k..n} binomial(n-1,i-1)*S2(i-1,k-1). - _Thomas Wieder_, Jan 27 2007
%F A008277 Representation of Stirling numbers of the second kind S2(n,k), n=1,2,..., k=1,2,...,n, as special values of hypergeometric function of type (n)F(n-1): S2(n,k)= (-1)^(k-1)*hypergeom([ -k+1,2,2,...,2],[1,1,...,1],1)/(k-1)!, i.e., having n parameters in the numerator: one equal to -k+1 and n-1 parameters all equal to 2; and having n-1 parameters in the denominator all equal to 1 and the value of the argument equal to 1. Example: S2(6,k)= seq(evalf((-1)^(k-1)*hypergeom([ -k+1,2,2,2,2,2],[1,1,1,1,1],1)/(k-1)!),k=1..6)=1,31,90,65,15,1. - _Karol A. Penson_, Mar 28 2007
%F A008277 From _Tom Copeland_, Oct 10 2007: (Start)
%F A008277 Bell_n(x) = Sum_{j=0..n} S2(n,j) * x^j = Sum_{j=0..n} E(n,j) * Lag(n,-x, j-n) = Sum_{j=0..n} (E(n,j)/n!) * (n!*Lag(n,-x, j-n)) = Sum_{j=0..n} E(n,j) * binomial(Bell.(x)+j, n) umbrally where Bell_n(x) are the Bell / Touchard / exponential polynomials; S2(n,j), the Stirling numbers of the second kind; E(n,j), the Eulerian numbers; and Lag(n,x,m), the associated Laguerre polynomials of order m.
%F A008277 For x = 0, the equation gives Sum_{j=0..n} E(n,j) * binomial(j,n) = 1 for n=0 and 0 for all other n. By substituting the umbral compositional inverse of the Bell polynomials, the lower factorial n!*binomial(y,n), for x in the equation, the Worpitzky identity is obtained; y^n = Sum_{j=0..n} E(n,j) * binomial(y+j,n).
%F A008277 Note that E(n,j)/n! = E(n,j)/(Sum_{k=0..n}E(n,k)). Also (n!*Lag(n, -1, j-n)) is A086885 with a simple combinatorial interpretation in terms of seating arrangements, giving a combinatorial interpretation to the equation for x=1; n!*Bell_n(1) = n!*Sum_{j=0..n} S2(n,j) = Sum_{j=0..n} E(n,j) * (n!*Lag(n, -1, j-n)).
%F A008277 (Appended Sep 16 2020) For connections to the Bernoulli numbers, extensions, proofs, and a clear presentation of the number arrays involved in the identities above, see my post Reciprocity and Umbral Witchcraft. (End)
%F A008277 n-th row = leftmost column of nonzero terms of A127701^(n-1). Also, (n+1)-th row of the triangle = A127701 * n-th row; deleting the zeros. Example: A127701 * [1, 3, 1, 0, 0, 0, ...] = [1, 7, 6, 1, 0, 0, 0, ...]. - _Gary W. Adamson_, Nov 21 2007
%F A008277 The row polynomials are given by D^n(e^(x*t)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A147315 and A094198. See also A185422. - _Peter Bala_, Nov 25 2011
%F A008277 Let f(x) = e^(e^x). Then for n >= 1, 1/f(x)*(d/dx)^n(f(x)) = 1/f(x)*(d/dx)^(n-1)(e^x*f(x)) = Sum_{k=1..n} S2(n,k)*e^(k*x). Similar formulas hold for A039755, A105794, A111577, A143494 and A154537. - _Peter Bala_, Mar 01 2012
%F A008277 S2(n,k) = A048993(n,k), 1 <= k <= n. - _Reinhard Zumkeller_, Mar 26 2012
%F A008277 O.g.f. for the n-th diagonal is D^n(x), where D is the operator x/(1-x)*d/dx. - _Peter Bala_, Jul 02 2012
%F A008277 n*i!*S2(n-1,i) = Sum_{j=(i+1)..n} (-1)^(j-i+1)*j!/(j-i)*S2(n,j). - _Leonid Bedratyuk_, Aug 19 2012
%F A008277 G.f.: (1/Q(0)-1)/(x*y), where Q(k) = 1 - (y+k)*x - (k+1)*y*x^2/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Nov 09 2013
%F A008277 From _Tom Copeland_, Apr 17 2014: (Start)
%F A008277 Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result as A007318(x) = P(x).
%F A008277 With Bell(n,x)=B(n,x) defined above, D = d/dx, and :xD:^n = x^n*D^n, a Dobinski formula gives umbrally f(y)^B(.,x) = e^(-x)*e^(f(y)*x). Then f(y)^B(.,:xD:)g(x) = [f(y)^(xD)]g(x) = e^[-(1-f(y)):xD:]g(x) = g[f(y)x].
%F A008277 In particular, for f(y) = (1+y),
%F A008277 A) (1+y)^B(.,x) = e^(-x)*e^((1+y)*x) = e^(x*y) = e^[log(1+y)B(.,x)],
%F A008277 B) (I+dP)^B(.,x) = e^(x*dP) = P(x) = e^[x*(e^M-I)]= e^[M*B(.,x)] with dP = A132440, M = A238385-I = log(I+dP), and I = identity matrix, and
%F A008277 C) (1+dP)^(xD) = e^(dP:xD:) = P(:xD:) = e^[(e^M-I):xD:] = e^[M*xD] with action e^(dP:xD:)g(x) = g[(I+dP)*x].
%F A008277 D) P(x)^m = P(m*x), which implies (Sum_{k=1..m} a_k)^j = B(j,m*x) where the sum is umbrally evaluated only after exponentiation with (a_k)^q = B(.,x)^q = B(q,x). E.g., (a1+a2+a3)^2=a1^2+a2^2+a3^2+2(a1*a2+a1*a3+a2*a3) = 3*B(2,x)+6*B(1,x)^2 = 9x^2+3x = B(2,3x).
%F A008277 E) P(x)^2 = P(2x) = e^[M*B(.,2x)] = A038207(x), the face vectors of the n-Dim hypercubes.
%F A008277 (End)
%F A008277 As a matrix equivalent of some inversions mentioned above, A008277*A008275 = I, the identity matrix, regarded as lower triangular matrices. - _Tom Copeland_, Apr 26 2014
%F A008277 O.g.f. for the n-th diagonal of the triangle (n = 0,1,2,...): Sum_{k>=0} k^(k+n)*(x*e^(-x))^k/k!. Cf. the generating functions of the diagonals of A039755. Also cf. A112492. - _Peter Bala_, Jun 22 2014
%F A008277 Floor(1/(-1 + Sum_{n>=k} 1/S2(n,k))) = A034856(k-1), for k>=2. The fractional portion goes to zero at large k. - _Richard R. Forberg_, Jan 17 2015
%F A008277 From _Daniel Forgues_, Jan 16 2016: (Start)
%F A008277 Let x_(n), called a factorial term (Boole, 1970) or a factorial polynomial (Elaydi, 2005: p. 60), denote the falling factorial Product_{k=0..n-1} (x-k). Then, for n >= 1, x_(n) = Sum_{k=1..n} A008275(n,k) * x^k, x^n = Sum_{k=1..n} T(n,k) * x_(k), where A008275(n,k) are Stirling numbers of the first kind.
%F A008277 For n >= 1, the row sums yield the exponential numbers (or Bell numbers): Sum_{k=1..n} T(n,k) = A000110(n), and Sum_{k=1..n} (-1)^(n+k) * T(n,k) = (-1)^n * Sum_{k=1..n} (-1)^k * T(n,k) = (-1)^n * A000587(n), where A000587 are the complementary Bell numbers. (End)
%F A008277 Sum_{k=1..n} k*S2(n,k) = A138378(n). - _Alois P. Heinz_, Jan 07 2022
%F A008277 O.g.f. for the m-th column: x^m/(Product_{j=1..m} 1-j*x). - _Daniel Checa_, Aug 25 2022
%F A008277 S2(n,k) ~ (k^n)/k!, for fixed k as n->oo. - _Daniel Checa_, Nov 08 2022
%F A008277 S2(2n+k, n) ~ (2^(2n+k-1/2) * n^(n+k-1/2)) / (sqrt(Pi*(1-c)) * exp(n) * c^n * (2-c)^(n+k)), where c = -LambertW(-2 * exp(-2)). - _Miko Labalan_, Dec 21 2024
%F A008277 From _Mikhail Kurkov_, Mar 05 2025: (Start)
%F A008277 For a general proof of the formulas below via generating functions, see Mathematics Stack Exchange link.
%F A008277 Recursion for the n-th row (independently of other rows): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} (j-2)!*binomial(-k,j)*T(n,k+j-1) for 1 <= k < n with T(n,n) = 1 (see Fedor Petrov link).
%F A008277 Recursion for the k-th column (independently of other columns): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} binomial(n,j)*T(n-j+1,k)*(-1)^j for 1 <= k < n with T(n,n) = 1. (End)
%e A008277 The triangle S2(n, k) begins:
%e A008277 \ k    1       2       3        4         5         6         7         8        9
%e A008277 n \   10      11      12       13        14        15       ...
%e A008277 ----------------------------------------------------------------------------------
%e A008277 1  |   1
%e A008277 2  |   1       1
%e A008277 3  |   1       3       1
%e A008277 4  |   1       7       6        1
%e A008277 5  |   1      15      25       10         1
%e A008277 6  |   1      31      90       65        15         1
%e A008277 7  |   1      63     301      350       140        21         1
%e A008277 8  |   1     127     966     1701      1050       266        28         1
%e A008277 9  |   1     255    3025     7770      6951      2646       462        36        1
%e A008277 10 |   1     511    9330    34105     42525     22827      5880       750       45
%e A008277        1
%e A008277 11 |   1    1023   28501   145750    246730    179487     63987     11880     1155
%e A008277       55       1
%e A008277 12 |   1    2047   86526   611501   1379400   1323652    627396    159027    22275
%e A008277     1705      66       1
%e A008277 13 |   1    4095  261625  2532530   7508501   9321312   5715424   1899612   359502
%e A008277    39325    2431      78        1
%e A008277 14 |   1    8191  788970 10391745  40075035  63436373  49329280  20912320  5135130
%e A008277   752752   66066    3367       91         1
%e A008277 15 |   1   16383 2375101 42355950 210766920 420693273 408741333 216627840 67128490
%e A008277 12662650 1479478  106470     4550       105         1
%e A008277 ...
%e A008277 ----------------------------------------------------------------------------------
%e A008277 x^4 = 1 x_(1) + 7 x_(2) + 6 x_(3) + 1 x_(4), where x_(k) = P(x,k) = k!*C(x,k). - _Daniel Forgues_, Jan 16 2016
%p A008277 seq(seq(combinat[stirling2](n, k), k=1..n), n=1..10); # _Zerinvary Lajos_, Jun 02 2007
%p A008277 stirling_2 := (n,k) -> (1/k!) * add((-1)^(k-i)*binomial(k,i)*i^n, i=0..k);
%t A008277 Table[StirlingS2[n, k], {n, 11}, {k, n}] // Flatten (* _Robert G. Wilson v_, May 23 2006 *)
%t A008277 BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
%t A008277 rows = 12;
%t A008277 B = BellMatrix[1&, rows];
%t A008277 Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *)
%t A008277 a[n_, n_] := 1; a[n_, 1] := 1;
%t A008277 a[n_, k_] := a[n, k] = a[n-1, k-1] + k a[n-1, k]; Flatten@
%t A008277 Table[a[n, k], {n, 1, 11}, {k, 1, n}] (* _Oliver Seipel_, Jun 12 2024 *)
%t A008277 With[{m = 11},
%t A008277  Flatten@MapIndexed[Take[#, #2[[1]]] &,
%t A008277    Transpose@
%t A008277     Table[Range[1, m]! Coefficient[(E^x-1)^k/k! + O[x]^(m+1), x,
%t A008277 Range[1, m]], {k, 1, m}]]] (* _Oliver Seipel_, Jun 12 2024 *)
%o A008277 (PARI) for(n=1,22,for(k=1,n,print1(stirling(n,k,2),", "));print()); \\ _Joerg Arndt_, Apr 21 2013
%o A008277 (PARI) Stirling2(n,k)=sum(i=0,k,(-1)^i*binomial(k,i)*i^n)*(-1)^k/k!  \\ _M. F. Hasler_, Mar 06 2012
%o A008277 (Haskell)
%o A008277 a008277 n k = a008277_tabl !! (n-1) !! (k-1)
%o A008277 a008277_row n = a008277_tabl !! (n-1)
%o A008277 a008277_tabl = map tail $ a048993_tabl  -- _Reinhard Zumkeller_, Mar 26 2012
%o A008277 (Maxima) create_list(stirling2(n+1,k+1),n,0,30,k,0,n); /* _Emanuele Munarini_, Jun 01 2012 */
%o A008277 (Sage) stirling_number2 # _Danny Rorabaugh_, Oct 11 2015
%o A008277 (J) n ((] (1 % !)) * +/@((^~ * (] (_1 ^ |.)) * (! {:)@]) i.@>:)) k NB. _Stephen Makdisi_, Apr 06 2016
%o A008277 (Magma) [[StirlingSecond(n,k): k in [1..n]]: n in [1..12]]; // _G. C. Greubel_, May 22 2019
%Y A008277 Cf. A008275 (Stirling numbers of first kind), A048993 (another version of this triangle).
%Y A008277 Cf. A000217, A001296, A001297, A001298, A007318, A028246, A039810-A039813, A048994, A087107-A087111, A087127, A094262, A127701.
%Y A008277 See also A331155.
%Y A008277 Cf. A038207, A086885, A132440, A138378, A173018, A238385.
%Y A008277 Cf. A055154, A163353, A256894.
%Y A008277 Cf. A000110 (row sums), A102661 (partial row sums).
%K A008277 nonn,easy,tabl,nice,core,changed
%O A008277 1,5
%A A008277 _N. J. A. Sloane_