This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008280 #103 Sep 03 2025 05:02:36 %S A008280 1,0,1,1,1,0,0,1,2,2,5,5,4,2,0,0,5,10,14,16,16,61,61,56,46,32,16,0,0, %T A008280 61,122,178,224,256,272,272,1385,1385,1324,1202,1024,800,544,272,0,0, %U A008280 1385,2770,4094,5296,6320,7120,7664,7936,7936 %N A008280 Boustrophedon version of triangle of Euler-Bernoulli or Entringer numbers read by rows. %C A008280 The earliest known reference for this triangle is Seidel (1877). - _Don Knuth_, Jul 13 2007 %C A008280 Sum of row n = A000111(n+1). - _Reinhard Zumkeller_, Nov 01 2013 %D A008280 M. D. Atkinson: Partial orders and comparison problems, Sixteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, (Boca Raton, Feb 1985), Congressus Numerantium 47, 77-88. %D A008280 J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 110. %D A008280 A. J. Kempner, On the shape of polynomial curves, Tohoku Math. J., 37 (1933), 347-362. %D A008280 A. A. Kirillov, Variations on the triangular theme, Amer. Math. Soc. Transl., (2), Vol. 169, 1995, pp. 43-73, see p. 53. %D A008280 R. P. Stanley, Enumerative Combinatorics, volume 1, second edition, chapter 1, exercise 141, Cambridge University Press (2012), p. 128, 174, 175. %H A008280 Vincenzo Librandi, <a href="/A008280/b008280.txt">Table of n, a(n) for n = 0..1000</a> %H A008280 V. I. Arnold, <a href="http://dx.doi.org/10.1215/S0012-7094-91-06323-4">Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics</a>, Duke Math. J. 63 (1991), 537-555. %H A008280 V. I. Arnold, <a href="http://mi.mathnet.ru/eng/umn4470">The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups</a>, Uspekhi Mat. nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51. %H A008280 M. D. Atkinson, <a href="http://dx.doi.org/10.1016/0020-0190(85)90057-2">Zigzag permutations and comparisons of adjacent elements</a>, Information Processing Letters 21 (1985), 187-189. %H A008280 Dominique Foata and Guo-Niu Han, <a href="http://www-irma.u-strasbg.fr/~foata/paper/pub123Seidel.pdf">Seidel Triangle Sequences and Bi-Entringer Numbers</a>, November 20, 2013. %H A008280 Dominique Foata, Guo-Niu Han, and Volker Strehl, <a href="https://doi.org/10.1016/j.laa.2016.09.016">The Entringer-Poupard matrix sequence</a>. Linear Algebra Appl. 512, 71-96 (2017). Example 4.3. %H A008280 Ira M. Gessel, <a href="https://arxiv.org/abs/2411.16113">Counting up-up-or-down-down permutations</a>, arXiv:2411.16113 [math.CO], 2024. %H A008280 Boris Gourévitch, <a href="http://www.pi314.net">L'univers de Pi</a> %H A008280 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a> %H A008280 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>). %H A008280 Christiane Poupard, <a href="http://dx.doi.org/10.1016/0012-365X(82)90293-X">De nouvelles significations énumératives des nombres d'Entringer</a>, Discrete Math., 38 (1982), 265-271. %H A008280 Sanjay Ramassamy, <a href="https://arxiv.org/abs/1712.08666">Modular periodicity of the Euler numbers and a sequence by Arnold</a>, arXiv:1712.08666 [math.CO], 2017. %H A008280 L. Seidel, <a href="http://publikationen.badw.de/de/003384831/pdf/CC%20BY">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187; see Beilage 5, pp. 183-184. %H A008280 Ross Street, <a href="https://arxiv.org/abs/math/0303267">Trees, permutations and the tangent function</a>, arXiv:math/0303267 [math.HO], 2003. %H A008280 Wikipedia, <a href="https://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a> %H A008280 <a href="/index/Bo#boustrophedon"> Index entries for sequences related to boustrophedon transform</a> %F A008280 T(n,m) = abs( Sum_{k=0..n} C(m,k)*Euler(n-m+k) ). - _Vladimir Kruchinin_, Apr 06 2015 %F A008280 E.g.f.: (cos(x) + sin(x))/cos(x+y). - _Ira M. Gessel_, Nov 18 2024 %e A008280 This version of the triangle begins: %e A008280 [0] [ 1] %e A008280 [1] [ 0, 1] %e A008280 [2] [ 1, 1, 0] %e A008280 [3] [ 0, 1, 2, 2] %e A008280 [4] [ 5, 5, 4, 2, 0] %e A008280 [5] [ 0, 5, 10, 14, 16, 16] %e A008280 [6] [ 61, 61, 56, 46, 32, 16, 0] %e A008280 [7] [ 0, 61, 122, 178, 224, 256, 272, 272] %e A008280 [8] [1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0] %e A008280 [9] [ 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936] %e A008280 See A008281 and A108040 for other versions. %t A008280 max = 9; t[0, 0] = 1; t[n_, m_] /; n < m || m < 0 = 0; t[n_, m_] := t[n, m] = Sum[t[n-1, n-k], {k, m}]; tri = Table[t[n, m], {n, 0, max}, {m, 0, n}]; Flatten[ {Reverse[#[[1]]], #[[2]]} & /@ Partition[tri, 2]] (* _Jean-François Alcover_, Oct 24 2011 *) %t A008280 T[0,0] := 1; T[n_?OddQ,k_]/;0<=k<=n := T[n,k]=T[n,k-1]+T[n-1,k-1]; T[n_?EvenQ,k_]/;0<= k<=n := T[n,k]=T[n,k+1]+T[n-1,k]; T[n_,k_] := 0; Flatten@Table[T[n,k], {n,0,9}, {k,0,n}] (* _Oliver Seipel_, Nov 24 2024 *) %o A008280 (Sage) # Algorithm of L. Seidel (1877) %o A008280 # Prints the first n rows of the triangle. %o A008280 def A008280_triangle(n) : %o A008280 A = {-1:0, 0:1} %o A008280 k = 0; e = 1 %o A008280 for i in range(n) : %o A008280 Am = 0 %o A008280 A[k + e] = 0 %o A008280 e = -e %o A008280 for j in (0..i) : %o A008280 Am += A[k] %o A008280 A[k] = Am %o A008280 k += e %o A008280 print([A[z] for z in (-i//2..i//2)]) %o A008280 A008280_triangle(10) # _Peter Luschny_, Jun 02 2012 %o A008280 (Haskell) %o A008280 a008280 n k = a008280_tabl !! n !! k %o A008280 a008280_row n = a008280_tabl !! n %o A008280 a008280_tabl = ox True a008281_tabl where %o A008280 ox turn (xs:xss) = (if turn then reverse xs else xs) : ox (not turn) xss %o A008280 -- _Reinhard Zumkeller_, Nov 01 2013 %o A008280 (Python) # Python 3.2 or higher required. %o A008280 from itertools import accumulate %o A008280 A008280_list = blist = [1] %o A008280 for n in range(10): %o A008280 blist = list(reversed(list(accumulate(reversed(blist))))) + [0] if n % 2 else [0]+list(accumulate(blist)) %o A008280 A008280_list.extend(blist) %o A008280 print(A008280_list) # _Chai Wah Wu_, Sep 20 2014 %o A008280 (Python) # Uses function seidel from A008281. %o A008280 def A008280row(n): return seidel(n) if n % 2 else seidel(n)[::-1] %o A008280 for n in range(8): print(A008280row(n)) # _Peter Luschny_, Jun 01 2022 %o A008280 (Maxima) %o A008280 T(n, m):=abs(sum(binomial(m, k)*euler(n-m+k), k, 0, m)); /* _Vladimir Kruchinin_, Apr 06 2015 */ %Y A008280 Cf. A008281, A108040, A058257. %Y A008280 Cf. A000657 (central terms); A227862. %K A008280 nonn,tabl,nice,changed %O A008280 0,9 %A A008280 _N. J. A. Sloane_