This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008283 #31 Jul 08 2025 01:02:27 %S A008283 1,2,4,5,10,14,16,32,46,56,61,122,178,224,256,272,544,800,1024,1202, %T A008283 1324,1385,2770,4094,5296,6320,7120,7664,7936,15872,23536,30656,36976, %U A008283 42272,46366,49136,50521,101042,150178,196544,238816,275792,306448,329984,345856 %N A008283 Read across rows of Euler-Bernoulli or Entringer triangle. %H A008283 V. I. Arnold, <a href="http://mi.mathnet.ru/eng/umn4470">The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups</a>, Uspekhi Mat. nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51. <a href="http://iopscience.iop.org/article/10.1070/RM1992v047n01ABEH000861/pdf">English version</a>. %H A008283 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>). %H A008283 C. Poupard, <a href="http://dx.doi.org/10.1016/0012-365X(82)90293-X">De nouvelles significations énumeratives des nombres d'Entringer</a>, Discrete Math., 38 (1982), 265-271. %e A008283 This is a sub-triangle of A008282, starting in row 3 of A008282 and then proceeding as a regular triangle. %e A008283 [ 3] 1 %e A008283 [ 4] 2, 4 %e A008283 [ 5] 5, 10, 14 %e A008283 [ 6] 16, 32, 46, 56 %e A008283 [ 7] 61, 122, 178, 224, 256 %e A008283 [ 8] 272, 544, 800, 1024, 1202, 1324 %e A008283 [ 9] 1385, 2770, 4094, 5296, 6320, 7120, 7664 %e A008283 [10] 7936, 15872, 23536, 30656, 36976, 42272, 46366, 49136 %e A008283 [11] 50521, 101042, 150178, 196544, 238816, 275792, 306448, 329984, 345856 %p A008283 T := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else %p A008283 T(n, k - 1) + T(n - 1, n - k) fi end: %p A008283 seq(seq(T(n, k-2), k = 3..n), n = 3..11); # _Peter Luschny_, Feb 17 2021 %t A008283 T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0], %t A008283 T[n, k - 1] + T[n - 1, n - k]]; %t A008283 Table[Table[T[n, k - 2], {k, 3, n}], {n, 3, 11}] // Flatten (* after _Peter Luschny_ *) %Y A008283 Cf. A008282. %K A008283 nonn,tabl %O A008283 3,2 %A A008283 _N. J. A. Sloane_