This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008295 #37 Apr 12 2023 10:52:36 %S A008295 1,1,1,1,2,2,2,5,9,9,4,13,34,64,64,9,35,119,326,625,625,20,95,401, %T A008295 1433,4016,7776,7776,48,262,1316,5799,21256,60387,117649,117649,115, %U A008295 727,4247,22224,100407,373895,1071904,2097152,2097152 %N A008295 Triangle read by rows: T(n,k) is the number of partially labeled rooted trees with n vertices, k of which are labeled, 0 <= k <= n. %C A008295 T(n, k) where n counts the vertices and 0 <= k <= n counts the labels. - _Sean A. Irvine_, Mar 22 2018 %D A008295 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 134. %H A008295 Sean A. Irvine, <a href="/A008295/b008295.txt">Table of n, a(n) for n = 0..527</a> %H A008295 J. Riordan, <a href="https://dx.doi.org/10.1007/BF02392398">The numbers of labeled colored and chromatic trees</a>, Acta Mathematica 97 (1957) 211. %H A008295 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A008295 E.g.f.: r(x,y) = T(n,k) * y^k * x^n / k! satisfies r(x,y) * exp(r(x)) = (1+y) * r(x) * exp(r(x,y)) where r(x) is the o.g.f. for A000081. - _Sean A. Irvine_, Mar 22 2018 %e A008295 Triangle begins with T(0,0): %e A008295 n\k 0 1 2 3 4 5 6 %e A008295 0 1 %e A008295 1 1 1 %e A008295 2 1 2 2 %e A008295 3 2 5 9 9 %e A008295 4 4 13 34 64 64 %e A008295 5 9 35 119 326 625 625 %e A008295 6 20 95 401 1433 4016 7776 7776 %t A008295 m = 9; r[_] = 0; %t A008295 Do[r[x_] = x Exp[Sum[r[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, m}]; %t A008295 r[x_, y_] = -ProductLog[(-E^(-r[x])) r[x] - (r[x] y)/E^r[x]]; %t A008295 (CoefficientList[#, y] Range[0, Exponent[#, y]]!)& /@ CoefficientList[r[x, y] + O[x]^m, x] /. {} -> {1} // Flatten // Quiet (* _Jean-François Alcover_, Oct 23 2019 *) %Y A008295 Main diagonal is A000169. %Y A008295 Columns k=0..6 are A000081, A000107, A000524, A000444, A000525, A064781, A064782. %Y A008295 Cf. A034799. %K A008295 nonn,tabl,nice %O A008295 0,5 %A A008295 _N. J. A. Sloane_ %E A008295 More terms from _Sean A. Irvine_, Mar 22 2018 %E A008295 Name edited by _Andrew Howroyd_, Mar 23 2023