This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008307 #48 Dec 16 2021 22:19:48 %S A008307 1,1,1,1,2,1,1,4,1,1,1,10,3,2,1,1,26,9,4,1,1,1,76,21,16,1,2,1,1,232, %T A008307 81,56,1,6,1,1,1,764,351,256,25,18,1,2,1,1,2620,1233,1072,145,66,1,4, %U A008307 1,1,1,9496,5769,6224,505,396,1,16,3,2,1,1,35696,31041,33616,1345,2052,1,56,9,4,1,1 %N A008307 Table T(n,k) giving number of permutations of [1..n] with order dividing k, read by antidiagonals. %C A008307 Solutions to x^k = 1 in Symm_n (the symmetric group of degree n). %D A008307 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257. %D A008307 J. D. Dixon, B. Mortimer, Permutation Groups, Springer (1996), Exercise 1.2.13. %H A008307 Alois P. Heinz, <a href="/A008307/b008307.txt">Antidiagonals n = 1..141, flattened</a> %H A008307 M. B. Kutler, C. R. Vinroot, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Vinroot/vinroot3.html">On q-Analogs of Recursions for the Number of Involutions and Prime Order Elements in Symmetric Groups</a>, JIS 13 (2010) #10.3.6, eq (5) for primes k. %F A008307 T(n+1,k) = Sum_{d|k} (n)_(d-1)*T(n-d+1,k), where (n)_i = n!/(n - i)! = n*(n - 1)*(n - 2)*...*(n - i + 1) is the falling factorial. %F A008307 E.g.f. for n-th row: Sum_{n>=0} T(n,k)*t^n/n! = exp(Sum_{d|k} t^d/d). %e A008307 Array begins: %e A008307 1, 1, 1, 1, 1, 1, 1, 1, ... %e A008307 1, 2, 1, 2, 1, 2, 1, 2, ... %e A008307 1, 4, 3, 4, 1, 6, 1, 4, ... %e A008307 1, 10, 9, 16, 1, 18, 1, 16, ... %e A008307 1, 26, 21, 56, 25, 66, 1, 56, ... %e A008307 1, 76, 81, 256, 145, 396, 1, 256, ... %e A008307 1, 232, 351, 1072, 505, 2052, 721, 1072, ... %e A008307 1, 764, 1233, 6224, 1345, 12636, 5761, 11264, ... %p A008307 A:= proc(n,k) option remember; `if`(n<0, 0, `if`(n=0, 1, %p A008307 add(mul(n-i, i=1..j-1)*A(n-j,k), j=numtheory[divisors](k)))) %p A008307 end: %p A008307 seq(seq(A(1+d-k, k), k=1..d), d=1..12); # _Alois P. Heinz_, Feb 14 2013 %p A008307 # alternative %p A008307 A008307 := proc(n,m) %p A008307 local x,d ; %p A008307 add(x^d/d, d=numtheory[divisors](m)) ; %p A008307 exp(%) ; %p A008307 coeftayl(%,x=0,n) ; %p A008307 %*n! ; %p A008307 end proc: %p A008307 seq(seq(A008307(1+d-k,k),k=1..d),d=1..12) ; # _R. J. Mathar_, Apr 30 2017 %t A008307 t[n_ /; n >= 0, k_ /; k >= 0] := t[n, k] = Sum[(n!/(n - d + 1)!)*t[n - d, k], {d, Divisors[k]}]; t[_, _] = 1; Flatten[ Table[ t[n - k, k], {n, 0, 12}, {k, 1, n}]] (* _Jean-François Alcover_, Dec 12 2011, after given formula *) %Y A008307 Rows give A000034, A284517, A284518. %Y A008307 Columns give A000012, A000085, A001470, A001472, A052501, A053496, A053497, A053498, A053499, A053500, A053501, A053502, A053503, A053504, A053505. %Y A008307 Main diagonal gives A074759. - _Alois P. Heinz_, Feb 14 2013 %K A008307 nonn,tabl,easy,look,nice %O A008307 1,5 %A A008307 _N. J. A. Sloane_ %E A008307 More terms from _Vladeta Jovovic_, Apr 13 2001