cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008312 Triangle of coefficients of Chebyshev polynomials U_n(x).

This page as a plain text file.
%I A008312 #32 Dec 17 2021 08:12:39
%S A008312 1,2,-1,4,-4,8,1,-12,16,6,-32,32,-1,24,-80,64,-8,80,-192,128,1,-40,
%T A008312 240,-448,256,10,-160,672,-1024,512,-1,60,-560,1792,-2304,1024,-12,
%U A008312 280,-1792,4608,-5120,2048
%N A008312 Triangle of coefficients of Chebyshev polynomials U_n(x).
%C A008312 Version with zeros in A053117. - _Philippe Deléham_, Nov 27 2013
%D A008312 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
%H A008312 T. D. Noe, <a href="/A008312/b008312.txt">Rows n = 0..100 of triangle, flattened</a>
%H A008312 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A008312 D. Foata and G.-N. Han, <a href="http://www-irma.u-strasbg.fr/~foata/paper/pub71.html">Nombres de Fibonacci et polynomes orthogonaux</a>.
%H A008312 Valentin Ovsienko, <a href="https://arxiv.org/abs/2103.10800">Towards quantized complex numbers: q-deformed Gaussian integers and the Picard group</a>, arXiv:2103.10800 [math.QA], 2021.
%H A008312 M. Janjic and B. Petkovic, <a href="http://arxiv.org/abs/1301.4550">A Counting Function</a>, arXiv preprint arXiv:1301.4550, 2013. - From _N. J. A. Sloane_,  Feb 13 2013
%H A008312 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%e A008312 From _Philippe Deléham_, Nov 27 2013: (Start)
%e A008312 Triangle begins:
%e A008312     1;
%e A008312     2;
%e A008312    -1,    4;
%e A008312    -4,    8;
%e A008312     1,  -12,    16;
%e A008312     6,  -32,    32;
%e A008312    -1,   24,   -80,    64;
%e A008312    -8,   80,  -192,   128;
%e A008312     1,  -40,   240,  -448,   256;
%e A008312    10, -160,   672, -1024,   512;
%e A008312    -1,   60,  -560,  1792, -2304, 1024;
%e A008312   -12,  280, -1792,  4608, -5120, 2048;
%e A008312   ...
%e A008312 With zeros, triangle begins:
%e A008312    1;
%e A008312    0,   2;
%e A008312   -1,   0,   4;
%e A008312    0,  -4,   0,    8;
%e A008312    1,   0, -12,    0,   16;
%e A008312    0,   6,   0,  -32,    0,    32;
%e A008312   -1,   0,  24,    0,  -80,     0,   64;
%e A008312    0,  -8,   0,   80,    0,  -192,    0,   128;
%e A008312    1,   0, -40,    0,  240,     0, -448,     0,   256;
%e A008312    0,  10,   0, -160,    0,   672,    0, -1024,     0,   512;
%e A008312   -1,   0,  60,    0, -560,     0, 1792,     0, -2304,     0, 1024;
%e A008312    0, -12,   0,  280,    0, -1792,    0,  4608,     0, -5120,    0, 2048;
%e A008312   ...
%e A008312 (End)
%t A008312 a[n_, k_] := Coefficient[ ChebyshevU[n, x], x, k]; row[n_] := Table[a[n, k], {k, Mod[n, 2], n, 2}]; Table[row[n], {n, 0, 11}] // Flatten (* _Jean-François Alcover_, Oct 03 2012 *)
%Y A008312 Reflected version with zeros: A053118. Cf. A008310, A053112, A053117.
%K A008312 sign,tabf,easy,nice
%O A008312 0,2
%A A008312 _N. J. A. Sloane_