cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008314 Irregular triangle read by rows: one half of the coefficients of the expansion of (2*x)^n in terms of Chebyshev T-polynomials.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 4, 3, 1, 5, 10, 1, 6, 15, 10, 1, 7, 21, 35, 1, 8, 28, 56, 35, 1, 9, 36, 84, 126, 1, 10, 45, 120, 210, 126, 1, 11, 55, 165, 330, 462, 1, 12, 66, 220, 495, 792, 462, 1, 13, 78, 286, 715, 1287, 1716, 1, 14, 91, 364, 1001, 2002, 3003, 1716, 1, 15, 105, 455, 1365, 3003, 5005
Offset: 0

Views

Author

Keywords

Comments

The entry a(0,0) should actually be 1/2.
The row lengths of this array are [1,1,2,2,3,3,...] = A004526.
Row k also counts the binary strings of length k that have 0, 2 up to 2*floor(k/2) 'unmatched symbols'. See contributions by Marc van Leeuwen at the Mathematics Stack Exchange link. - Wouter Meeussen, Apr 17 2013
For n >= 1, T(n,k) is the coefficient of cos((n-2k)x) in the expression for 2^(n-1)*cos(x)^n as a sum of cosines of multiples of x. It is binomial(n,k) if k < n/2, while T(n,n/2) = binomial(n,n/2)/2 if n is even. - Robert Israel, Jul 25 2016

Examples

			[1/2], [1], [1,2/2=1], [1,3], [1,4,6/2=3], [1,5,10], [1,6,15,20/2=10],...
From _Wolfdieter Lang_, Aug 01 2014: (Start)
This irregular triangle begins (even n has falling even T-polynomial indices, odd n has falling odd T-indices):
n\k  1  2   3   4     5     6     7     8 ...
0: 1/2 (but a(0,1) = 1)
1:   1
2:   1  1
3:   1  3
4:   1  4   3
5:   1  5  10
6:   1  6  15  10
7:   1  7  21  35
8:   1  8  28  56    35
9:   1  9  36  84   126
10:  1 10  45 120   210   126
11:  1 11  55 165   330   462
12:  1 12  66 220   495   792   462
13:  1 13  78 286   715  1287  1716
14:  1 14  91 364  1001  2002  3003  1716
15:  1 15 105 455  1365  3003  5005  6435
...
(2*x)^5 = 2*(1*T_5(x) + 5*T_3(x) + 10*T_1(x)),
(2*x)^6 = 2*(1*T_6(x) + 6*T_4(x) + 15*T_3(x) + 10*T_0(x)).
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • T. J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., Wiley, New York, 1990, pp. 54-55, Ex. 1.5.31.

Crossrefs

Bisection triangles: A122366 (odd numbered rows), A127673 (even numbered rows).

Programs

  • Maple
    F:= proc(n) local q;
      q:= combine(2^(n-1)*cos(t)^n,trig);
      if n::even then
         seq(coeff(q,cos((n-2*j)*t)),j=0..n/2-1),eval(q,cos=0)
      else
         seq(coeff(q,cos((n-2*j)*t)),j=0..(n-1)/2)
      fi
    end proc:
    1, seq(F(n),n=1..15); # Robert Israel, Jul 25 2016
  • Mathematica
    Table[(c/@ Range[n,0,-2]) /. Flatten[Solve[Thread[CoefficientList[Expand[1/2*(2*x)^n -Sum[c[k] ChebyshevT[k,x],{k,0,n}]],x]==0]]],{n,16}];
    (* or with combinatorics *)
    match[li:{(1|-1)..}]:= Block[{it=li,rot=0}, While[Length[Union[Join[it,{"(",")"}]]]>3, rot++; it=RotateRight[it //.{a___,1,b___String,-1,c___} ->{a,"(",b,")",c}]]; RotateLeft[it,rot] /. {(1|-1)->0, "("->1,")"->-1}];
    Table[Last/@ Sort@ Tally[Table[Tr[Abs@ match[-1+2*IntegerDigits[n,2]]], {n,2^(k-1), 2^k-1}]], {k,1,16}]; (* Wouter Meeussen, Apr 17 2013 *)

Formula

a(n,k) are the M_3 multinomial numbers A036040 for the partitions with m = 1 and 2 parts (in Abramowitz-Stegun order). - Wolfdieter Lang, Aug 01 2014

Extensions

Name reformulated by Wolfdieter Lang, Aug 01 2014