A008314 Irregular triangle read by rows: one half of the coefficients of the expansion of (2*x)^n in terms of Chebyshev T-polynomials.
1, 1, 1, 1, 1, 3, 1, 4, 3, 1, 5, 10, 1, 6, 15, 10, 1, 7, 21, 35, 1, 8, 28, 56, 35, 1, 9, 36, 84, 126, 1, 10, 45, 120, 210, 126, 1, 11, 55, 165, 330, 462, 1, 12, 66, 220, 495, 792, 462, 1, 13, 78, 286, 715, 1287, 1716, 1, 14, 91, 364, 1001, 2002, 3003, 1716, 1, 15, 105, 455, 1365, 3003, 5005
Offset: 0
Examples
[1/2], [1], [1,2/2=1], [1,3], [1,4,6/2=3], [1,5,10], [1,6,15,20/2=10],... From _Wolfdieter Lang_, Aug 01 2014: (Start) This irregular triangle begins (even n has falling even T-polynomial indices, odd n has falling odd T-indices): n\k 1 2 3 4 5 6 7 8 ... 0: 1/2 (but a(0,1) = 1) 1: 1 2: 1 1 3: 1 3 4: 1 4 3 5: 1 5 10 6: 1 6 15 10 7: 1 7 21 35 8: 1 8 28 56 35 9: 1 9 36 84 126 10: 1 10 45 120 210 126 11: 1 11 55 165 330 462 12: 1 12 66 220 495 792 462 13: 1 13 78 286 715 1287 1716 14: 1 14 91 364 1001 2002 3003 1716 15: 1 15 105 455 1365 3003 5005 6435 ... (2*x)^5 = 2*(1*T_5(x) + 5*T_3(x) + 10*T_1(x)), (2*x)^6 = 2*(1*T_6(x) + 6*T_4(x) + 15*T_3(x) + 10*T_0(x)). (End)
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- T. J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., Wiley, New York, 1990, pp. 54-55, Ex. 1.5.31.
Links
- Robert Israel, Table of n, a(n) for n = 0..10099 (rows 0 to 199, flattened)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Suyoung Choi and Hanchul Park, A new graph invariant arises in toric topology, arXiv preprint arXiv:1210.3776 [math.AT], 2012.
- Mathematics Stack Exchange, Bijection between number of partitions of 2n satisfying certain conditions with number of partitions of n, April-March 2013.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Maple
F:= proc(n) local q; q:= combine(2^(n-1)*cos(t)^n,trig); if n::even then seq(coeff(q,cos((n-2*j)*t)),j=0..n/2-1),eval(q,cos=0) else seq(coeff(q,cos((n-2*j)*t)),j=0..(n-1)/2) fi end proc: 1, seq(F(n),n=1..15); # Robert Israel, Jul 25 2016
-
Mathematica
Table[(c/@ Range[n,0,-2]) /. Flatten[Solve[Thread[CoefficientList[Expand[1/2*(2*x)^n -Sum[c[k] ChebyshevT[k,x],{k,0,n}]],x]==0]]],{n,16}]; (* or with combinatorics *) match[li:{(1|-1)..}]:= Block[{it=li,rot=0}, While[Length[Union[Join[it,{"(",")"}]]]>3, rot++; it=RotateRight[it //.{a___,1,b___String,-1,c___} ->{a,"(",b,")",c}]]; RotateLeft[it,rot] /. {(1|-1)->0, "("->1,")"->-1}]; Table[Last/@ Sort@ Tally[Table[Tr[Abs@ match[-1+2*IntegerDigits[n,2]]], {n,2^(k-1), 2^k-1}]], {k,1,16}]; (* Wouter Meeussen, Apr 17 2013 *)
Formula
a(n,k) are the M_3 multinomial numbers A036040 for the partitions with m = 1 and 2 parts (in Abramowitz-Stegun order). - Wolfdieter Lang, Aug 01 2014
Extensions
Name reformulated by Wolfdieter Lang, Aug 01 2014
Comments