cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008325 Number of simple regular trivalent bipartite graphs with 2n nodes.

This page as a plain text file.
%I A008325 #28 Apr 04 2020 11:04:58
%S A008325 1,1,2,6,14,41,157,725,4196,29816,246644,2297075,23503477,260265023,
%T A008325 3090336300,39101547971,524782945991,7443247863498,111221983956652,
%U A008325 1746165682538497,28734206614035245,494526496354065244,8883865784392246280,166286434745252091055,3237719048384605059117,65477287940472122129194
%N A008325 Number of simple regular trivalent bipartite graphs with 2n nodes.
%C A008325 Euler transform of A006823. - _Peter J. Taylor_, Sep 28 2017
%H A008325 G. Brinkmann, <a href="http://dx.doi.org/10.1002/(SICI)1097-0118(199610)23:2&lt;139::AID-JGT5&gt;3.0.CO;2-U">Fast generation of cubic graphs</a>, Journal of Graph Theory, 23(2):139-149, 1996.
%H A008325 Sean A. Irvine, <a href="/A008325/a008325.png">On the difference between A004066 and A008325</a>
%t A008325 A006823 = Cases[Import["https://oeis.org/A006823/b006823.txt", "Table"], {_, _}][[All, 2]];
%t A008325 etr[f_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d f[d], {d, Divisors[j]}] b[n - j], {j, 1, n}]/n]; b];
%t A008325 b[n_] := If[n >= 3, A006823[[n - 2]], 0];
%t A008325 a = etr[b];
%t A008325 a /@ Range[3, 16] (* _Jean-François Alcover_, Dec 03 2019 *)
%Y A008325 Column k=3 of A008327.
%Y A008325 Cf. A004066 (bicolored), A006823 (connected).
%K A008325 nonn,hard
%O A008325 3,3
%A A008325 _Brendan McKay_
%E A008325 a(15)-a(16) from _Peter J. Taylor_, Sep 28 2017
%E A008325 Terms a(17) and beyond from _Andrew Howroyd_, Apr 03 2020