This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008366 #55 Feb 16 2025 08:32:32 %S A008366 1,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103, %T A008366 107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193, %U A008366 197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283 %N A008366 Smallest prime factor is >= 17. %C A008366 Also the 17-rough numbers: positive integers that have no prime factors less than 17. - _Michael B. Porter_, Oct 10 2009 %C A008366 a(n) - (1001/192) n is periodic with period 5760. - _Robert Israel_, Mar 18 2016 %C A008366 From _Peter Bala_, May 12 2018: (Start) %C A008366 The product of two 17-rough numbers is a 17-rough number and the prime factors of a 17-rough number are 17-rough numbers. %C A008366 Let k equal either 13, 14, 15 or 16. Then the product of k numbers n*(n + a)*(n + 2*a)*...*(n + (k-1)*a) in arithmetical progression is divisible by k! for all integer n if and only if a is a 17-rough number. %C A008366 The sequence terms satisfy the congruence x^60 = 1 (mod 30030), where 30030 = 2*3*5*7*11*13. (End) %C A008366 The asymptotic density of this sequence is 192/1001. - _Amiram Eldar_, Sep 30 2020 %H A008366 Robert Israel, <a href="/A008366/b008366.txt">Table of n, a(n) for n = 1..10000</a> %H A008366 Peter Bala, <a href="/A008366/a008366_1.pdf">A property of p-rough numbers</a>. %H A008366 Benedict Irwin, <a href="/A008366/a008366.txt">Generating Function</a>. %H A008366 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RoughNumber.html">Rough Number</a>. %H A008366 <a href="/index/Sk#smooth">Index entries for sequences related to smooth numbers</a> %F A008366 Numbers n > 1 such that ((Sum_{k=1..n} k^10) mod n = 0) and ((Sum_{k=1..n} k^12) mod n = 0) (conjecture). - _Gary Detlefs_, Dec 27 2011 %F A008366 a(n) = a(n-1) + a(n-5760) - a(n-5761). - _Vaclav Kotesovec_, Mar 18 2016 %F A008366 G.f: x*P(x)/(1 - x - x^5760 + x^5761) where P(x) is a polynomial of degree 5760. - _Benedict W. J. Irwin_, Mar 23 2016 %F A008366 a(n) = (1001/192)*n + O(1), where the O(1) term is bounded by +/- 19. - _Charles R Greathouse IV_, Oct 13 2022 %F A008366 A008365 SETMINUS A084970 . - _R. J. Mathar_, Nov 05 2024 %p A008366 for i from 1 to 500 do if gcd(i,30030) = 1 then print(i); fi; od; %t A008366 Select[ Range[ 300 ], GCD[ #1, 30030 ]==1& ] %t A008366 Join[{1},Select[Range[300],FactorInteger[#][[1,1]]>=17&]] (* _Harvey P. Dale_, Mar 28 2020 *) %o A008366 (PARI) isA008366(n) = gcd(n,30030)==1 \\ _Michael B. Porter_, Oct 10 2009 %Y A008366 For k-rough numbers with other values of k, see A000027 A005408 A007310 A007775 A008364 A008365 A008366 A166061 A166063. %Y A008366 Cf. A005867. %K A008366 nonn,easy %O A008366 1,2 %A A008366 _N. J. A. Sloane_