cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008417 Crystal ball sequence for 8-dimensional cubic lattice.

This page as a plain text file.
%I A008417 #43 Jul 08 2025 01:03:41
%S A008417 1,17,145,833,3649,13073,40081,108545,265729,598417,1256465,2485825,
%T A008417 4673345,8405905,14546705,24331777,39490049,62390545,96220561,
%U A008417 145198913,214828609,312193553,446304145,628496897,872893441,1196924561,1621925137,2173806145,2883810113,3789356689,4934985233
%N A008417 Crystal ball sequence for 8-dimensional cubic lattice.
%C A008417 This is row/column 8 of the Delannoy numbers array, A008288, which is the main entry for these numbers, listing many more properties. - _Shel Kaphan_, Jan 06 2023
%H A008417 T. D. Noe, <a href="/A008417/b008417.txt">Table of n, a(n) for n = 0..1000</a>
%H A008417 J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H A008417 <a href="/index/Cor#crystal_ball">Index entries for crystal ball sequences</a>
%H A008417 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
%F A008417 G.f.: (1+x)^8/(1-x)^9.
%F A008417 First differences of A099196. - _Alexander Adamchuk_, May 23 2006
%F A008417 a(n) = (2*n^8 + 8*n^7 + 84*n^6 + 224*n^5 + 798*n^4 + 1232*n^3 + 1636*n^2 + 1056*n + 315)/315. - _Alexander Adamchuk_, May 23 2006
%F A008417 Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = log(2) - (1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7 - 1/8). - _Peter Bala_, Mar 23 2024
%t A008417 CoefficientList[Series[-(z + 1)^8/(z - 1)^9, {z, 0, 200}], z] (* _Vladimir Joseph Stephan Orlovsky_, Jun 19 2011 *)
%t A008417 LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,17,145,833,3649,13073,40081,108545,265729},40] (* _Harvey P. Dale_, May 26 2024 *)
%Y A008417 Cf. A001849, A099196.
%Y A008417 Partial sums of A008416.
%Y A008417 Cf. A240876.
%Y A008417 Row/Column 8 of A008288.
%K A008417 nonn,easy
%O A008417 0,2
%A A008417 _N. J. A. Sloane_
%E A008417 More terms from _Alexander Adamchuk_, May 23 2006