This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008427 #20 Dec 13 2017 02:47:32 %S A008427 1,16,368,448,3184,2016,10304,5504,25712,12112,46368,21312,89152, %T A008427 35168,126592,56448,205936,78624,278576,109760,401184,154112,490176, %U A008427 194688,719936,252016,808864,327040 %N A008427 Theta series of {D_8}* lattice. %D A008427 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120. %H A008427 G. C. Greubel, <a href="/A008427/b008427.txt">Table of n, a(n) for n = 0..10000</a> %H A008427 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006. %H A008427 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://doi.org/10.1016/j.jcta.2006.03.018">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745. %H A008427 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Ds8.html">Home page for this lattice</a> %F A008427 G.f.: (theta_3(q))^8 + (theta_2(q))^8. %t A008427 terms = 28; s = EllipticTheta[3, 0, q]^8 + EllipticTheta[2, 0, q]^8 + O[q]^terms; CoefficientList[s, q] (* _Jean-François Alcover_, Jul 04 2017 *) %Y A008427 Cf. A008430, A109772. %K A008427 nonn,easy %O A008427 0,2 %A A008427 _N. J. A. Sloane_