cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008435 Theta series of {D_7}^{+} packing.

This page as a plain text file.
%I A008435 #20 Feb 16 2025 08:32:32
%S A008435 1,0,0,0,0,0,0,64,84,0,0,0,0,0,0,448,574,0,0,0,0,0,0,1344,1288,0,0,0,
%T A008435 0,0,0,2688,3444,0,0,0,0,0,0,4928,4424,0,0,0,0,0,0,8064,9240,0,0,0,0,
%U A008435 0,0,11200,11088,0,0,0
%N A008435 Theta series of {D_7}^{+} packing.
%D A008435 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.
%H A008435 Seiichi Manyama, <a href="/A008435/b008435.txt">Table of n, a(n) for n = 0..10000</a>
%H A008435 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%F A008435 From _Seiichi Manyama_, Oct 21 2018: (Start)
%F A008435 Expansion of (theta_2(q)^7 + theta_3(q)^7 + theta_4(q)^7)/2 in powers of q^(1/4).
%F A008435 Expansion of (Sum_{k=-inf..inf} q^((k+1/2)^2))^7 + (Sum_{k=-inf..inf} q^(k^2))^7 + (Sum_{k=-inf..inf} (-1)^k * q^(k^2))^7 in powers of q^(1/4). (End)
%e A008435 G.f.: 1 + 64*q^(7/4) + 84*q^2 + 448*q^(15/4) + 574*q^4 + ... .
%Y A008435 Cf. A008429.
%K A008435 nonn,easy
%O A008435 0,8
%A A008435 _N. J. A. Sloane_