cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008436 Theta series of {D_9}^{+} packing.

This page as a plain text file.
%I A008436 #27 Feb 16 2025 08:32:32
%S A008436 1,0,0,0,0,0,0,0,144,256,0,0,0,0,0,0,2034,2304,0,0,0,0,0,0,7392,9216,
%T A008436 0,0,0,0,0,0,22608,23808,0,0,0,0,0,0,44640,50688,0,0,0,0,0,0,93984,
%U A008436 96768,0,0,0,0,0,0,141120
%N A008436 Theta series of {D_9}^{+} packing.
%D A008436 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.
%H A008436 Seiichi Manyama, <a href="/A008436/b008436.txt">Table of n, a(n) for n = 0..10000</a>
%H A008436 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%F A008436 From _Seiichi Manyama_, Oct 21 2018: (Start)
%F A008436 Expansion of (theta_2(q)^9 + theta_3(q)^9 + theta_4(q)^9)/2 in powers of q^(1/4).
%F A008436 Expansion of (Sum_{k=-oo..oo} q^((k+1/2)^2))^9 + (Sum_{k=-oo..oo} q^(k^2))^9 + (Sum_{k=-oo..oo} (-1)^k * q^(k^2))^9 in powers of q^(1/4). (End)
%e A008436 G.f.: 1 + 144*q^2 + 256*q^(9/4) + 2034*q^4 + 2304*q^(17/4) + ... .
%Y A008436 Cf. A000122 (theta_3(q)), A002448 (theta_4(q)), A008431.
%K A008436 nonn,easy
%O A008436 0,9
%A A008436 _N. J. A. Sloane_