cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008455 11th powers: a(n) = n^11.

This page as a plain text file.
%I A008455 #39 Jul 07 2025 20:11:42
%S A008455 0,1,2048,177147,4194304,48828125,362797056,1977326743,8589934592,
%T A008455 31381059609,100000000000,285311670611,743008370688,1792160394037,
%U A008455 4049565169664,8649755859375,17592186044416,34271896307633,64268410079232,116490258898219,204800000000000
%N A008455 11th powers: a(n) = n^11.
%H A008455 T. D. Noe, <a href="/A008455/b008455.txt">Table of n, a(n) for n = 0..1000</a>
%H A008455 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
%F A008455 a(n) = A000584(n)*A001014(n).
%F A008455 Multiplicative with a(p^e) = p^(11*e). - _David W. Wilson_, Aug 01 2001
%F A008455 Totally multiplicative with a(p) = p^11 for primes p. - _Jaroslav Krizek_, Nov 01 2009
%F A008455 From _Amiram Eldar_, Oct 08 2020: (Start)
%F A008455 Sum_{n>=1} 1/a(n) = zeta(11) (A013669).
%F A008455 Sum_{n>=1} (-1)^(n+1)/a(n) = 1023*zeta(11)/1024. (End)
%t A008455 Table[n^11, {n, 0, 30}] (* _Vincenzo Librandi_, Jul 05 2014 *)
%o A008455 (Maxima) A008455(n):=n^11$ makelist(A008455(n),n,0,20); /* _Martin Ettl_, Dec 17 2012 */
%o A008455 (Magma) [n^11: n in [0..40]]; // _Vincenzo Librandi_, Jul 05 2014
%o A008455 (PARI) A008455(n)=n^11 \\ _M. F. Hasler_, Jul 03 2025
%o A008455 (Python) A008455 = lambda n: n**11 # _M. F. Hasler_, Jul 03 2025
%Y A008455 Cf. A000583, A000584, A001014, A001017, A008454, A013669.
%Y A008455 Cf. A004813 - A004823 (sums of 2, ..., 12 positive eleventh powers).
%K A008455 nonn,easy,mult
%O A008455 0,3
%A A008455 _N. J. A. Sloane_