cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008494 Expansion of (1-x^12) / (1-x)^12.

This page as a plain text file.
%I A008494 #17 Sep 08 2022 08:44:35
%S A008494 1,12,78,364,1365,4368,12376,31824,75582,167960,352716,705432,1352077,
%T A008494 2496132,4457322,7725796,13036530,21469812,34584914,54595476,84596733,
%U A008494 128856520,193184004,285392328,415873822,598309152,850534752,1195596128,1663018149
%N A008494 Expansion of (1-x^12) / (1-x)^12.
%H A008494 Colin Barker, <a href="/A008494/b008494.txt">Table of n, a(n) for n = 0..1000</a>
%H A008494 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
%F A008494 From _Colin Barker_, Jan 06 2017: (Start)
%F A008494 a(n) = (604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10) / 302400 for n>0.
%F A008494 G.f.: (1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4) / (1 - x)^11.
%F A008494 (End)
%F A008494 E.g.f.: -1 + (604800 +3024000*x +8467200*x^2 +8265600*x^3 +4170600*x^4 + 1161720*x^5 +194460*x^6 +19740*x^7 +1245*x^8 +45*x^9 +x^10)* exp(x) / 302400. - _G. C. Greubel_, Nov 07 2019
%p A008494 1, seq((604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400, n=1..40); # _G. C. Greubel_, Nov 07 2019
%t A008494 Table[If[n==0,1,(604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400], {n,0,40}] (* _G. C. Greubel_, Nov 07 2019 *)
%o A008494 (PARI) Vec((1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4) / (1 - x)^11 + O(x^30)) \\ _Colin Barker_, Jan 06 2017
%o A008494 (Magma) [1] cat [(604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400: n in [1..40]]; // _G. C. Greubel_, Nov 07 2019
%o A008494 (Sage) [1]+[(604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400 for n in (1..40)] # _G. C. Greubel_, Nov 07 2019
%o A008494 (GAP) Concatenation([1], List([1..40], n-> (604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400 )); # _G. C. Greubel_, Nov 07 2019
%K A008494 nonn,easy
%O A008494 0,2
%A A008494 _N. J. A. Sloane_