This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008498 #48 Sep 08 2022 08:44:35 %S A008498 1,6,21,56,126,251,456,771,1231,1876,2751,3906,5396,7281,9626,12501, %T A008498 15981,20146,25081,30876,37626,45431,54396,64631,76251,89376,104131, %U A008498 120646,139056,159501,182126 %N A008498 4-dimensional centered tetrahedral numbers. %C A008498 Binomial transform of (1,5,10,10,5,0,0,0,...). - _Paul Barry_, Jul 01 2003 %C A008498 If X is an n-set and Y a fixed 5-subset of X then a(n-5) is equal to the number of 5-subsets of X intersecting Y. - _Milan Janjic_, Jul 30 2007 %C A008498 Also the sum of five consecutive terms of A000332. - _Bruno Berselli_, Jun 18 2015 %D A008498 E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 224 (general formula for n-th centered polytope number). %H A008498 Vincenzo Librandi, <a href="/A008498/b008498.txt">Table of n, a(n) for n = 0..10000</a> %H A008498 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a> %H A008498 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A008498 G.f.: (1-x^5)/(1-x)^6 = (1 +x +x^2 +x^3 +x^4)/(1-x)^5. %F A008498 a(n) = C(n,0) + 5*C(n,1) + 10*C(n,2) + 10*C(n,3) + 5*C(n,4). - _Paul Barry_, Jul 01 2003 %F A008498 a(n) = (5*n^4 + 10*n^3 + 55*n^2 + 50*n + 24)/24. - _Paul Barry_, Jul 01 2003 %F A008498 a(n) = binomial(n+5,5) - binomial(n,5). - _Zerinvary Lajos_, Jul 21 2006 %F A008498 a(n) = 1 + 5*A006522(n+2). - _Bruno Berselli_, Jun 18 2015 %F A008498 E.g.f.: (24 + 120*x + 120*x^2 + 40*x^3 + 5*x^4)*exp(x)/24. - _G. C. Greubel_, Nov 08 2019 %p A008498 [seq(binomial(n+5,5)-binomial(n,5), n=0..45)]; # _Zerinvary Lajos_, Jul 21 2006 %t A008498 LinearRecurrence[{5,-10,10,-5,1}, {1,6,21,56,126}, 40] (* _Harvey P. Dale_, Dec 18 2013 *) %t A008498 Table[1 + 5n(n+1)(n^2 +n +10)/24, {n, 0, 40}] (* _Bruno Berselli_, Jun 18 2015 *) %o A008498 (Magma) [(5*n^4+10*n^3+55*n^2+50*n+24)/24: n in [0..30] ]; // _Vincenzo Librandi_, Aug 21 2011 %o A008498 (Magma) [Binomial(n+5,5) - Binomial(n,5): n in [0..40]]; // _G. C. Greubel_, Nov 08 2019 %o A008498 (Sage) [binomial(n+5,5) - binomial(n,5) for n in (0..40)] # _G. C. Greubel_, Nov 08 2019 %o A008498 (GAP) List([0..40], n-> Binomial(n+5,5) - Binomial(n,5)); # _G. C. Greubel_, Nov 08 2019 %Y A008498 Cf. A000332, A005894, A006522. %K A008498 nonn,easy %O A008498 0,2 %A A008498 _N. J. A. Sloane_