This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008501 #29 Sep 08 2022 08:44:35 %S A008501 1,9,45,165,495,1287,3003,6435,12869,24301,43713,75417,125475,202203, %T A008501 316767,483879,722601,1057265,1518517,2144493,2982135,4088655,5533155, %U A008501 7398411,9782829,12802581,16593929 %N A008501 7-dimensional centered tetrahedral numbers. %C A008501 If X is an n-set and Y a fixed 8-subset of X then a(n-8) is equal to the number of 8-subsets of X intersecting Y. - _Milan Janjic_, Jul 30 2007 %H A008501 Vincenzo Librandi, <a href="/A008501/b008501.txt">Table of n, a(n) for n = 0..10000</a> %H A008501 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a> %H A008501 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1). %F A008501 G.f.: (1-x^8)/(1-x)^9 = (1+x)*(1+x^2)*(1+x^4)/(1-x)^8. %F A008501 1260*a(n) = (2*n+1)*(n^6 + 3*n^5 + 100*n^4 + 195*n^3 + 1159*n^2 + 1062*n + 1260). - _R. J. Mathar_, Mar 14 2011 %p A008501 seq(binomial(n+8,8) - binomial(n,8), n=0..30); # _G. C. Greubel_, Nov 09 2019 %t A008501 Table[Binomial[n + 8, 8] - Binomial[n, 8], {n, 0, 26}] (* _Bruno Berselli_, Mar 22 2012 *) %o A008501 (Magma) [((2*n+1)*(n^6+3*n^5 +100*n^4 +195*n^3 +1159*n^2 +1062*n +1260)/1260) : n in [0..30]]; // _Vincenzo Librandi_, Oct 08 2011 %o A008501 (PARI) vector(31, n, b=binomial; b(n+7,8) - b(n-1,8) ) \\ _G. C. Greubel_, Nov 09 2019 %o A008501 (Sage) b=binomial; [b(n+8,8) - b(n,8) for n in (0..30)] # _G. C. Greubel_, Nov 09 2019 %o A008501 (GAP) B:=Binomial;; List([0..30], n-> B(n+8,8)-B(n,8) ); # _G. C. Greubel_, Nov 09 2019 %K A008501 nonn,easy %O A008501 0,2 %A A008501 _N. J. A. Sloane_