This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008579 #88 Aug 07 2022 21:29:20 %S A008579 1,4,8,14,18,22,28,30,38,38,48,46,58,54,68,62,78,70,88,78,98,86,108, %T A008579 94,118,102,128,110,138,118,148,126,158,134,168,142,178,150,188,158, %U A008579 198,166,208,174,218,182,228,190,238,198,248,206,258,214,268,222,278 %N A008579 Coordination sequence for planar net 3.6.3.6. Spherical growth function for a certain reflection group in plane. %C A008579 Interesting because coefficients never become monotonic. %C A008579 Also the coordination sequence for a planar net made of densely packed circles. - _Yuriy Sibirmovsky_, Sep 11 2016 %C A008579 Described by J.-G. Eon (2014) as the coordination sequence of the Kagome net. - _N. J. A. Sloane_, Jan 03 2018 %D A008579 P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 161 (but beware errors). %H A008579 T. D. Noe, <a href="/A008579/b008579.txt">Table of n, a(n) for n = 0..1000</a> %H A008579 Pierre de La Harpe, and P. I. Grigorchuk, <a href="https://doi.org/10.1007/BF02671688">Local convexity of the growth function of finitely generated groups and question 5.2 in the Kourovka Notebook</a>, Algebra and Logic 37.6 (1998): 353-356. %H A008579 Jean-Guillaume Eon, <a href="http://dx.doi.org/10.1107/S0108767301016609">Algebraic determination of generating functions for coordination sequences in crystal structures</a>, Acta Cryst. A58 (2002), 47-53. See p. 51. %H A008579 Jean-Guillaume Eon, <a href="https://doi.org/10.1107/S0108767303022037">Topological density of nets: a direct calculation</a>, Acta Crystallographica Section A (Foundations of Crystallography), A60 (2014), 7-18; DOI: 10.1107/S0108767303022037. See Section 5. %H A008579 Jean-Guillaume Eon, <a href="https://doi.org/10.3390/sym10020035">Symmetry and Topology: The 11 Uninodal Planar Nets Revisited</a>, Symmetry, 10 (2018), 13 pages, doi:10.3390/sym10020035. See Section 4. %H A008579 Brian Galebach, <a href="/A250120/a250120.html">k-uniform tilings (k <= 6) and their A-numbers</a> %H A008579 Chaim Goodman-Strauss and N. J. A. Sloane, <a href="https://doi.org/10.1107/S2053273318014481">A Coloring Book Approach to Finding Coordination Sequences</a>, Acta Cryst. A75 (2019), 121-134, also <a href="http://NeilSloane.com/doc/Cairo_final.pdf">on NJAS's home page</a>. Also <a href="http://arxiv.org/abs/1803.08530">arXiv:1803.08530</a>. %H A008579 Branko Grünbaum and Geoffrey C. Shephard, <a href="http://www.jstor.org/stable/2689529">Tilings by regular polygons</a>, Mathematics Magazine, 50 (1977), 227-247. %H A008579 Tom Karzes, <a href="/A250122/a250122.html">Tiling Coordination Sequences</a> %H A008579 Reticular Chemistry Structure Resource, <a href="http://rcsr.net/layers/kgm">kgm</a> %H A008579 Yuriy Sibirmovsky, <a href="/A008579/a008579_1.png">Illustration of initial terms with densely packed circles</a>. %H A008579 N. J. A. Sloane, <a href="/A008579/a008579.png">Illustration of initial terms</a> %H A008579 N. J. A. Sloane, <a href="/A008576/a008576.png">The uniform planar nets and their A-numbers</a> [Annotated scanned figure from Gruenbaum and Shephard (1977)] %H A008579 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,-1). %F A008579 G.f.: (1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4)/(1 - x^2)^2. %F A008579 From _R. J. Mathar_, Nov 26 2014: (Start) %F A008579 a(2n) = A017365(n), n > 0. %F A008579 a(2n+1) = A017137(n), n > 0. (End) %F A008579 From _Stefano Spezia_, Aug 07 2022: (Start) %F A008579 a(n) = (9 + (-1)^n)*n/2 - 2*(-1)^n for n > 1. %F A008579 E.g.f.: 3 - 2*x + (4*x - 2)*cosh(x) + (5*x + 2)*sinh(x). (End) %p A008579 f := n->if n mod 2 = 0 then 10*(n/2)-2 else 8*(n-1)/2+6 fi; %t A008579 a[n_?EvenQ] := 10*n/2-2; a[n_?OddQ] := 8*(n-1)/2+6; a[0] = 1; a[1] = 4; Table[a[n], {n, 0, 45}] (* _Jean-François Alcover_, Nov 18 2011, after Maple *) %t A008579 CoefficientList[Series[(1+2x)(1+2x+2x^2+2x^3-x^4)/(1-x^2)^2,{x,0,50}],x] (* or *) LinearRecurrence[{0,2,0,-1},{1,4,8,14,18,22},50] (* _Harvey P. Dale_, Sep 05 2018 *) %o A008579 (Haskell) %o A008579 a008579 0 = 1 %o A008579 a008579 1 = 4 %o A008579 a008579 n = (10 - 2*m) * n' + 8*m - 2 where (n',m) = divMod n 2 %o A008579 a008579_list = 1 : 4 : concatMap (\x -> map (* 2) [5*x-1,4*x+3]) [1..] %o A008579 -- _Reinhard Zumkeller_, Nov 12 2012 %Y A008579 List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12). %Y A008579 Cf. A017137, A017365. %K A008579 nonn,nice,easy %O A008579 0,2 %A A008579 _N. J. A. Sloane_