cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008595 Multiples of 13.

This page as a plain text file.
%I A008595 #49 Apr 08 2025 16:37:16
%S A008595 0,13,26,39,52,65,78,91,104,117,130,143,156,169,182,195,208,221,234,
%T A008595 247,260,273,286,299,312,325,338,351,364,377,390,403,416,429,442,455,
%U A008595 468,481,494,507,520,533,546,559,572,585,598,611,624,637,650,663,676
%N A008595 Multiples of 13.
%C A008595 Complement of A113763. - _Reinhard Zumkeller_, Apr 26 2011
%H A008595 Ivan Panchenko, <a href="/A008595/b008595.txt">Table of n, a(n) for n = 0..200</a>
%H A008595 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H A008595 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=325">Encyclopedia of Combinatorial Structures 325</a>.
%H A008595 Luis Manuel Rivera, <a href="http://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
%H A008595 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A008595 (floor(a(n)/10) + 4*(a(n) mod 10)) == 0 modulo 13, see A076310. - _Reinhard Zumkeller_, Oct 06 2002
%F A008595 From _Vincenzo Librandi_, Dec 24 2010: (Start)
%F A008595 a(n) = 13*n.
%F A008595 a(n) = 2*a(n-1) - a(n-2).
%F A008595 G.f.: 13*x/(x-1)^2. (End)
%F A008595 From _Elmo R. Oliveira_, Apr 08 2025: (Start)
%F A008595 E.g.f.: 13*x*exp(x).
%F A008595 a(n) = A252994(n)/2. (End)
%p A008595 A008595:=n->13*n; seq(A008595(n), n=0..100); # _Wesley Ivan Hurt_, Jan 30 2014
%t A008595 Range[0, 1000, 13] (* _Vladimir Joseph Stephan Orlovsky_, May 29 2011 *)
%o A008595 (PARI) a(n)=13*n \\ _Charles R Greathouse IV_, Jul 10 2016
%Y A008595 Cf. A008594, A017533, A017545, A076310, A113763, A252994.
%K A008595 nonn,easy
%O A008595 0,2
%A A008595 _N. J. A. Sloane_