This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008627 #29 Jul 08 2025 01:18:58 %S A008627 1,1,2,3,5,6,10,12,17,21,28,33,43,50,62,72,87,99,118,133,155,174,200, %T A008627 222,253,279,314,345,385,420,466,506,557,603,660,711,775,832,902,966, %U A008627 1043,1113,1198,1275,1367,1452,1552,1644,1753,1853,1970,2079,2205,2322 %N A008627 Molien series for A_4. %C A008627 With offset = 4: a(n) is the number of equivalence classes of compositions (summands >=1) of n into exactly 4 parts where two compositions a,b are considered equivalent if the summands of a can be permuted into the summands of b with an even number of transpositions. For example, let the class representatives be the last such composition in lexicographic order. a(10)=10 because we have the following nine partitions of 10 into 4 parts, {7,1,1,1}, {6,2,1,1}, {5,3,1,1}, {5,2,2,1}, {4,4,1,1}, {4,3,2,1}, {4,2,2,2},{3,3,3,1}, {3,3,2,2} and the class represented by {3,4,2,1}. - _Geoffrey Critzer_, Oct 16 2012 %D A008627 D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105. %H A008627 <a href="/index/Mo#Molien">Index entries for Molien series</a> %H A008627 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1,-2,-1,2,1,-1). %F A008627 a(n) ~ 1/72*n^3. - _Ralf Stephan_, Apr 29 2014 %F A008627 G.f.: ( 1-x^2+x^4 ) / ( (1+x+x^2)*(1+x)^2*(x-1)^4 ). - _R. J. Mathar_, Dec 18 2014 %p A008627 (1+x^6)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4): seq(coeff(series(%,x,n+1),x,n), n=0..60); %t A008627 nn=50;CoefficientList[Series[CycleIndex[AlternatingGroup[4],s]/.Table[s[i]->x^i/(1-x^i),{i,1,nn}],{x,0,nn}],x] (* _Geoffrey Critzer_, Oct 16 2012 *) %o A008627 (Sage) %o A008627 ring = PowerSeriesRing(ZZ, 'x', default_prec=50) %o A008627 ms = AlternatingGroup(4).molien_series() %o A008627 list(ring(ms)) %o A008627 # _Ralf Stephan_, Apr 29 2014 %K A008627 nonn,easy %O A008627 0,3 %A A008627 _N. J. A. Sloane_