This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008631 #21 Sep 08 2022 08:44:36 %S A008631 1,1,2,3,5,7,11,15,22,29,40,52,70,89,116,146,186,230,288,352,434,525, %T A008631 638,764,919,1090,1297,1527,1802,2105,2464,2860,3324,3835,4428,5081, %U A008631 5834,6659,7604,8640,9819,11107,12566,14158,15951,17904,20093,22474,25133 %N A008631 Molien series for alternating group Alt_8 (or A_8). %D A008631 D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105. %H A008631 G. C. Greubel, <a href="/A008631/b008631.txt">Table of n, a(n) for n = 0..1000</a> %H A008631 <a href="/index/Mo#Molien">Index entries for Molien series</a> %H A008631 <a href="/index/Rec#order_32">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,1,-2,-1,-1,-1,1,1,2,3,0,-1,-1,-4,-1,-1,0,3,2,1,1,-1,-1,-1,-2,1,0,1,1,-1). %F A008631 G.f.: (1+x^28)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)). %p A008631 seq(coeff(series( (1+x^28)/mul((1-x^j), j=1..8)), x, n+1), x, n), n = 0..50); # _G. C. Greubel_, Feb 02 2020 %t A008631 CoefficientList[Series[(1+x^28)/Product[(1-x^j), {j,1,8}], {x,0,50}], x] (* _G. C. Greubel_, Feb 02 2020 *) %t A008631 LinearRecurrence[{1,1,0,1,-2,-1,-1,-1,1,1,2,3,0,-1,-1,-4,-1,-1,0,3,2,1,1,-1,-1,-1,-2,1,0,1,1,-1},{1,1,2,3,5,7,11,15,22,29,40,52,70,89,116,146,186,230,288,352,434,525,638,764,919,1090,1297,1527,1802,2105,2464,2860},70] (* _Harvey P. Dale_, May 12 2022 *) %o A008631 (PARI) Vec( (1+x^28)/prod(j=1,8, 1-x^j) +O('x^50) ) \\ _G. C. Greubel_, Feb 02 2020 %o A008631 (Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^28)/(&*[1-x^j: j in [1..8]]) )); // _G. C. Greubel_, Feb 02 2020 %o A008631 (Sage) %o A008631 def A008631_list(prec): %o A008631 P.<x> = PowerSeriesRing(ZZ, prec) %o A008631 return P( (1+x^28)/product(1-x^j for j in (1..8)) ).list() %o A008631 A008631_list(70) # _G. C. Greubel_, Feb 02 2020 %Y A008631 Different from A008637. %K A008631 nonn,easy %O A008631 0,3 %A A008631 _N. J. A. Sloane_