This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008635 #22 Sep 08 2022 08:44:36 %S A008635 1,1,2,3,5,7,11,15,22,30,42,56,77,100,133,172,224,285,366,460,582,725, %T A008635 905,1116,1380,1686,2063,2503,3036,3655,4401,5262,6290,7476,8877, %U A008635 10489,12384,14552,17084,19978,23334,27156,31570,36578,42333,48849 %N A008635 Molien series for alternating group Alt_12 (or A_12). %D A008635 D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105. %H A008635 Sean A. Irvine, <a href="/A008635/b008635.txt">Table of n, a(n) for n = 0..1000</a> %H A008635 <a href="/index/Mo#Molien">Index entries for Molien series</a> %H A008635 <a href="/index/Rec#order_72">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, 0, 0, -1, 1, -2, -1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, -1, -2, -3, -3, -1, -1, 1, 0, 3, 4, 3, 3, 1, 2, -2, -3, -3, -4, -3, -3, -2, 2, 1, 3, 3, 4, 3, 0, 1, -1, -1, -3, -3, -2, -1, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, -1, -2, 1, -1, 0, 0, 1, 1, -1). %F A008635 G.f.: (1+x^66)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)*(1-x^10)*(1-x^11)*(1-x^12)). %p A008635 seq(coeff(series( (1+x^66)/mul((1-x^j), j=1..12)), x, n+1), x, n), n = 0..50); # _G. C. Greubel_, Feb 02 2020 %t A008635 CoefficientList[Series[(1+x^66)/Product[(1-x^j), {j,12}], {x,0,50}], x] (* _G. C. Greubel_, Feb 02 2020 *) %o A008635 (PARI) Vec( (1+x^66)/prod(j=1,12, 1-x^j) +O('x^50) ) \\ _G. C. Greubel_, Feb 02 2020 %o A008635 (Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^66)/(&*[1-x^j: j in [1..12]]) )); // _G. C. Greubel_, Feb 02 2020 %o A008635 (Sage) %o A008635 def A008631_list(prec): %o A008635 P.<x> = PowerSeriesRing(ZZ, prec) %o A008635 return P( (1+x^66)/product(1-x^j for j in (1..12)) ).list() %o A008635 A008631_list(70) # _G. C. Greubel_, Feb 02 2020 %K A008635 nonn,easy %O A008635 0,3 %A A008635 _N. J. A. Sloane_ %E A008635 More terms from _Sean A. Irvine_, Apr 01 2018