This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008650 #21 Sep 08 2022 08:44:36 %S A008650 1,1,1,2,2,2,3,3,3,5,5,5,7,7,7,9,9,9,12,12,12,15,15,15,18,18,18,23,23, %T A008650 23,28,28,28,33,33,33,40,40,40,47,47,47,54,54,54,63,63,63,72,72,72,81, %U A008650 81,81,93,93,93,105,105 %N A008650 Molien series of 4 X 4 upper triangular matrices over GF( 3 ). %D A008650 D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105. %H A008650 G. C. Greubel, <a href="/A008650/b008650.txt">Table of n, a(n) for n = 0..1000</a> %H A008650 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=235">Encyclopedia of Combinatorial Structures 235</a> %H A008650 <a href="/index/Mo#Molien">Index entries for Molien series</a> %H A008650 <a href="/index/Rec#order_40">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 1, -1, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 1, -1). %F A008650 a(n) ~ 1/4374*n^3. - _Ralf Stephan_, Apr 29 2014 %F A008650 G.f.: 1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)). %p A008650 1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)): seq(coeff(series(%, x, n+1), x, n), n=0..70); %t A008650 CoefficientList[Series[1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)), {x,0,70}], x] (* _G. C. Greubel_, Sep 06 2019 *) %o A008650 (PARI) my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27))) \\ _G. C. Greubel_, Sep 06 2019 %o A008650 (Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)) )); // _G. C. Greubel_, Sep 06 2019 %o A008650 (Sage) %o A008650 def A008650_list(prec): %o A008650 P.<x> = PowerSeriesRing(ZZ, prec) %o A008650 return P(1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27))).list() %o A008650 A008650_list(70) # _G. C. Greubel_, Sep 06 2019 %K A008650 nonn,easy %O A008650 0,4 %A A008650 _N. J. A. Sloane_