A008655 Theta series of direct sum of 4 copies of hexagonal lattice.
1, 24, 216, 888, 1752, 3024, 7992, 8256, 14040, 24216, 27216, 31968, 64824, 52752, 74304, 111888, 112344, 117936, 217944, 164640, 220752, 305472, 287712, 292032, 519480, 378024, 474768, 654072
Offset: 0
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
- J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
Programs
-
Maple
A008655 := proc(n) add( A004016(i)*x^i,i=0..n) ; coeftayl(%^4,x=0,n) ; end proc: # R. J. Mathar, Feb 22 2021
-
Mathematica
terms = 28; s = (EllipticTheta[3, 0, q]^3 + EllipticTheta[3, Pi/3, q]^3 + EllipticTheta[3, 2 Pi/3, q]^3)^4/(81*EllipticTheta[3, 0, q^3]^4) + O[q]^(2 terms); CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 07 2017, from LatticeData(A2) *)
Formula
Expansion of (theta_3(z)*theta_3(3z) + theta_2(z)*theta_2(3z))^4.
Comments