This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008700 #30 Sep 11 2022 09:33:40 %S A008700 1,144,193104,16809408,397822032,4630076640,34416785088,187487524224, %T A008700 814891939920,2975535123408,9486534607200,27053022904128, %U A008700 70486183583424,169931012132448,384163644219264,820166796086400 %N A008700 Theta series of Niemeier lattice of type D_4^6. %C A008700 Also the theta series of the Niemeier lattice of type A_5^4 D_4. - clarified by _Ben Mares_, Jul 17 2022 %D A008700 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407. %H A008700 G. C. Greubel, <a href="/A008700/b008700.txt">Table of n, a(n) for n = 0..1000</a> %F A008700 This series is the q-expansion of (2*E_4(z)^3 + E_6(z)^2)/3. - _Daniel D. Briggs_, Nov 25 2011 %t A008700 terms = 15; th = EllipticTheta; E4 = 1 + 240*Sum[k^3*(q^k/(1 - q^k)), {k, 1, terms}] + O[q]^terms; E6 = th[2, 0, q]^12 + th[3, 0, q]^12 - 33*th[2, 0, q]^4*th[3, 0, q]^4*(th[2, 0, q]^4 + th[3, 0, q]^4); CoefficientList[ (2/3)*E4^3 + (1/3)*E6^2 + O[q]^terms, q] (* _Jean-François Alcover_, Jul 05 2017 *) %Y A008700 Cf. A004009, A013973. %Y A008700 Cf. A008688 - A008699, A008701, A008702, A008703, A008704. %K A008700 nonn %O A008700 0,2 %A A008700 _N. J. A. Sloane_