This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008701 #17 Mar 04 2020 17:13:38 %S A008701 1,120,193680,16803360,397857360,4629960720,34416930240,187487926080, %T A008701 814889912400,2975537850840,9486537389280,27053010073440, %U A008701 70486192486080,169931025998160,384163634574720 %N A008701 Theta series of Niemeier lattice of type A_4^6. %D A008701 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407. %H A008701 G. C. Greubel, <a href="/A008701/b008701.txt">Table of n, a(n) for n = 0..1000</a> %F A008701 This series is the q-expansion of (47*E_4(z)^3 + 25*E_6(z)^2)/72. - _Daniel D. Briggs_, Nov 25 2011 %t A008701 terms = 15; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 47/72 E4[q]^3 + 25/72 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* _Jean-François Alcover_, Jul 06 2017 *) %Y A008701 Cf. A004009, A013973. %Y A008701 Cf. A008688 - A008700, A008702, A008703, A008704. %K A008701 nonn %O A008701 0,2 %A A008701 _N. J. A. Sloane_