cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008703 Theta series of Niemeier lattice of type A_2^12.

This page as a plain text file.
%I A008703 #17 Mar 04 2020 14:55:01
%S A008703 1,72,194832,16791264,397928016,4629728880,34417220544,187488729792,
%T A008703 814885857360,2975543305704,9486542953440,27052984412064,
%U A008703 70486210291392,169931053729584,384163615285632
%N A008703 Theta series of Niemeier lattice of type A_2^12.
%D A008703 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407.
%H A008703 G. C. Greubel, <a href="/A008703/b008703.txt">Table of n, a(n) for n = 0..1000</a>
%F A008703 This series is the q-expansion of (5*E_4(z)^3 + 3*E_6(z)^2)/8. - _Daniel D. Briggs_, Nov 25 2011
%t A008703 terms = 15; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 5/8 E4[q]^3 + 3/8 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* _Jean-François Alcover_, Jul 06 2017 *)
%Y A008703 Cf. A004009, A013973.
%Y A008703 Cf. A008688 - A008702, A008704.
%K A008703 nonn
%O A008703 0,2
%A A008703 _N. J. A. Sloane_