This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008704 #23 Mar 04 2020 14:54:30 %S A008704 1,48,195408,16785216,397963344,4629612960,34417365696,187489131648, %T A008704 814883829840,2975546033136,9486545735520,27052971581376, %U A008704 70486219194048,169931067595296,384163605641088 %N A008704 Theta series of Niemeier lattice of type A_1^24. %D A008704 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407. %H A008704 G. C. Greubel, <a href="/A008704/b008704.txt">Table of n, a(n) for n = 0..1000</a> %F A008704 This series is the q-expansion of (11*E_4(z)^3 + 7*E_6(z)^2)/18. - _Daniel D. Briggs_, Nov 26 2011 %t A008704 terms = 15; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 11/18 E4[q]^3 + 7/18 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* _Jean-François Alcover_, Jul 06 2017 *) %Y A008704 Cf. A004009, A013973. %Y A008704 Cf. A008688 - A008703. %K A008704 nonn %O A008704 0,2 %A A008704 _N. J. A. Sloane_