This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008718 #37 Sep 02 2023 11:02:40 %S A008718 1,1,1,1,2,2,3,3,4,5,6,6,9,10,11,12,15,16,19,20,23,26,29,30,36,39,42, %T A008718 45,51,54,60,63,69,75,81,84,94,100,106,112,122,128,138,144,154,164, %U A008718 174,180,195,205,215,225,240,250,265,275,290,305,320,330,351,366 %N A008718 Expansion of g.f.: (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)). %C A008718 Molien series for genus-2 weight enumerators of binary self-dual codes is (1+x^18)/((1-x^2)*(1-x^8)*(1-x^12)*(1-x^24)). Exponents have been divided by 2 to get the sequence. %C A008718 Or, Molien series for 4-dimensional representation of 2.{3,4,3}. This is the real 4-dimensional Clifford group of genus 2 and order 2304. %H A008718 T. D. Noe, <a href="/A008718/b008718.txt">Table of n, a(n) for n = 0..1000</a> %H A008718 F. J. MacWilliams, C. L. Mallows and N. J. A. Sloane, <a href="http://neilsloane.com/doc/gleason2.html">Generalizations of Gleason's theorem on weight enumerators of self-dual codes</a>, IEEE Trans. Inform. Theory, 18 (1972), 794-805; see p. 802, col. 2, foot. %H A008718 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006. %H A008718 <a href="/index/Mo#Molien">Index entries for Molien series</a> %H A008718 <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,0,-1,0,-1,1,0,0,0,1,-1,0,-1,0,1,0,1,-1). %F A008718 a(n) ~ (1/864)*n^3. - _Ralf Stephan_, Apr 29 2014 %F A008718 G.f.: ( 1-x^3+x^6 ) / ( (1-x+x^2) *(x^4-x^2+1) *(1+x)^2 *(x^2+1)^2 *(1+x+x^2)^2 *(x-1)^4 ). - _R. J. Mathar_, Dec 18 2014 %p A008718 (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)); seq(coeff(series(%, x, n+1), x, n), n = 0..65); # modified by _G. C. Greubel_, Sep 09 2019 %t A008718 CoefficientList[Series[(1+x^9)/((1-x)(1-x^4)(1-x^6)(1-x^12)), {x,0,65}], x] (* _Harvey P. Dale_, Apr 01 2011 *) %t A008718 LinearRecurrence[{1,0,1,0,-1,0,-1,1,0,0,0,1,-1,0,-1,0,1,0,1,-1}, {1,1,1, 1,2,2,3,3,4,5,6,6,9,10,11,12,15,16,19,20}, 65] (* _Ray Chandler_, Jul 16 2015 *) %o A008718 (PARI) my(x='x+O('x^65)); Vec((1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12))) \\ _G. C. Greubel_, Sep 09 2019 %o A008718 (Magma) R<x>:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)) )); // _G. C. Greubel_, Sep 09 2019 %o A008718 (Sage) %o A008718 def A008718_list(prec): %o A008718 P.<x> = PowerSeriesRing(ZZ, prec) %o A008718 return P((1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12))).list() %o A008718 A008718_list(65) # _G. C. Greubel_, Sep 09 2019 %Y A008718 Cf. A008621, A024186. %K A008718 nonn,easy,nice %O A008718 0,5 %A A008718 _N. J. A. Sloane_