This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008724 #64 Feb 16 2025 08:32:32 %S A008724 0,0,0,0,1,2,3,4,5,6,8,10,12,14,16,18,21,24,27,30,33,36,40,44,48,52, %T A008724 56,60,65,70,75,80,85,90,96,102,108,114,120,126,133,140,147,154,161, %U A008724 168,176,184,192,200,208,216,225,234,243,252,261,270,280,290,300,310,320,330,341,352 %N A008724 a(n) = floor(n^2/12). %C A008724 With a different offset, Molien series for 3-dimensional group [2,n] = *22n. %H A008724 Vincenzo Librandi, <a href="/A008724/b008724.txt">Table of n, a(n) for n = 0..10000</a> %H A008724 P. T. Ho, <a href="http://dx.doi.org/10.1016/j.disc.2005.09.010">The crossing number of K_{4,n} on the real projective plane</a>, Discr. Math., 304 (2005), pp. 23-33. %H A008724 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=189">Encyclopedia of Combinatorial Structures 189</a>. %H A008724 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ToroidalCrossingNumber.html">Toroidal Crossing Number</a>. %H A008724 <a href="/index/Mo#Molien">Index entries for Molien series</a>. %H A008724 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,1,-2,1). %F A008724 a(n) = a(n-6) + n - 3. - _Paul Barry_, Jul 14 2004 %F A008724 a(n) = Sum_{j=0..n+2} floor(j/6), a(n-2) = (1/2)*floor(n/6)*(2*n - 4 - 6*floor(n/6)). - _Mitch Harris_, Sep 08 2008 %F A008724 G.f.: x^4/((1-x)^2*(1-x^6)). %F A008724 Sum_{n>=4} 1/a(n) = Pi^2/18 - Pi/(2*sqrt(3)) + 49/12. - _Amiram Eldar_, Aug 14 2022 %F A008724 a(n) = a(-n) = A174709(n+2). - _Michael Somos_, Dec 05 2023 %p A008724 A008724 := proc(n) %p A008724 floor(n^2/12) ; %p A008724 end proc: %p A008724 seq(A008724(n),n=0..30) ; # _R. J. Mathar_, Mar 28 2017 %t A008724 Floor[Range[0, 70]^2/12] (* _G. C. Greubel_, Sep 09 2019 *) %o A008724 (Magma) a008724:=func< n | Floor(n^2/12) >; [ a008724(n): n in [0..70] ]; %o A008724 (PARI) a(n)=n^2\12 \\ _Charles R Greathouse IV_, Jul 02 2013 %o A008724 (Sage) [floor(n^2/12) for n in (0..70)] # _G. C. Greubel_, Sep 09 2019 %o A008724 (GAP) List([0..70], n-> Int(n^2/12) ); # _G. C. Greubel_, Sep 09 2019 %Y A008724 Cf. A001399, A174709. %K A008724 nonn,easy %O A008724 0,6 %A A008724 _N. J. A. Sloane_ %E A008724 Minor edits by _Klaus Brockhaus_, Nov 24 2010