This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008733 #39 Sep 08 2022 08:44:36 %S A008733 1,0,2,1,4,2,6,4,9,6,12,9,16,12,20,16,25,20,30,25,36,30,42,36,49,42, %T A008733 56,49,64,56,72,64,81,72,90,81,100,90,110,100,121,110,132,121,144,132, %U A008733 156,144,169,156,182,169,196,182,210,196,225,210,240,225,256 %N A008733 Molien series for 3-dimensional group [2+, n] = 2*(n/2). %H A008733 Vincenzo Librandi, <a href="/A008733/b008733.txt">Table of n, a(n) for n = 0..1000</a> %H A008733 <a href="/index/Mo#Molien">Index entries for Molien series</a> %H A008733 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,1,-1,-1,1). %F A008733 From _R. J. Mathar_, Nov 04 2008: (Start) %F A008733 a(n) = A005232(n) - A005232(n-1). %F A008733 G.f.: (1-x+x^2)/((1-x)^3*(1+x)^2*(1+x^2)). (End) %F A008733 a(n) = floor((n^2 + 5*n + 13 + 3*(n+1)*(-1)^n)/16). - _Tani Akinari_, Aug 23 2013 %F A008733 a(n) = Sum_{i=1..floor((n+4)/2)} floor((i-(n mod 2))/2). - _Wesley Ivan Hurt_, Mar 31 2014 %F A008733 a(n) = (2*n^2+10*n+13+3*(2*n+5)*(-1)^n+4*(-1)^((6*n-1+(-1)^n)/4))/32. - _Luce ETIENNE_, Jun 09 2015 %t A008733 CoefficientList[Series[(1+x^3)/((1-x^2)^2*(1-x^4)), {x,0,70}], x] (* _Vincenzo Librandi_, Aug 24 2013 *) %t A008733 LinearRecurrence[{1,1,-1,1,-1,-1,1},{1,0,2,1,4,2,6},70] (* _Harvey P. Dale_, Nov 23 2015 *) %o A008733 (Magma) [Floor((n^2+5*n+13+3*(n+1)*(-1)^n)/16): n in [0..70]]; // _Vincenzo Librandi_, Aug 24 2013 %o A008733 (PARI) a(n)=((n^2+5*n+13+3*(n+1)*(-1)^n))\16 \\ _Charles R Greathouse IV_, Jun 11 2015 %o A008733 (Sage) [floor((n^2 + 5*n + 13 + 3*(n+1)*(-1)^n)/16) for n in (0..70)] # _G. C. Greubel_, Jul 30 2019 %o A008733 (GAP) List([0..70], n-> Int((n^2 + 5*n + 13 + 3*(n+1)*(-1)^n)/16)); # _G. C. Greubel_, Jul 30 2019 %K A008733 nonn,easy %O A008733 0,3 %A A008733 _N. J. A. Sloane_