This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008749 #17 Sep 08 2022 08:44:36 %S A008749 1,1,2,3,4,5,8,9,12,15,18,21,26,29,34,39,44,49,56,61,68,75,82,89,98, %T A008749 105,114,123,132,141,152,161,172,183,194,205,218,229,242,255,268,281, %U A008749 296,309,324,339,354,369 %N A008749 Expansion of (1+x^6)/((1-x)*(1-x^2)*(1-x^3)). %C A008749 Conjecture: For n >= 1, A067628(a(n+2)) appears for the first time in A067628. Equivalently, A067628(a(n+2)) is the first T such that the minimal perimeter of polyiamonds of T triangles is a(n+2). - Winston C. Yang (winston(AT)cs.wisc.edu), Feb 05 2002 %H A008749 G. C. Greubel, <a href="/A008749/b008749.txt">Table of n, a(n) for n = 0..1000</a> %H A008749 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,-1,-1,1). %F A008749 Conjecture: Let b(n>=0) = (0, 1, 1, 1, 1, 3, 1, 3, 3, 3, 3, 5, 3, 5, 5, 5, 5, 7, 3, ...). Equivalently, let b(0) = 0, b(n>=1) = 2*floor((n-1)/6) + 1 + (2 if n+1=0 mod 6; 0 else). Then a(0) = 1, a(n>=1) = a(n-1) + b(n-1). - Winston C. Yang (winston(AT)cs.wisc.edu), Feb 05 2002 %F A008749 a(n) = (47 + 6*n^2 + 9*(-1)^n + 8*A099837(n+3))/36, n>0. - _R. J. Mathar_, Jun 24 2009 %e A008749 Let n = 8. Then a(n+2) = a(10) = 18. Note A067628(18) = 12 and is the first appearance of 12 in A067628. Equivalently, 12 is the first T such that the min perimeter of polyiamonds of T triangles is 18. %t A008749 CoefficientList[Series[(1+x^6)/((1-x)*(1-x^2)*(1-x^3)), {x,0,60}], x] (* _G. C. Greubel_, Aug 03 2019 *) %o A008749 (PARI) my(x='x+O('x^60)); Vec((1+x^6)/((1-x)*(1-x^2)*(1-x^3))) \\ _G. C. Greubel_, Aug 03 2019 %o A008749 (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^6)/((1-x)*(1-x^2)*(1-x^3)) )); // _G. C. Greubel_, Aug 03 2019 %o A008749 (Sage) ((1+x^6)/((1-x)*(1-x^2)*(1-x^3))).series(x, 60).coefficients(x, sparse=False) # _G. C. Greubel_, Aug 03 2019 %o A008749 (GAP) a:=[1,1,2,3,4,5];; for n in [7..60] do a[n]:=a[n-1]+a[n-2]-a[n-4] -a[n-5]+a[n-6]; od; a; # _G. C. Greubel_, Aug 03 2019 %Y A008749 Cf. A067628. %K A008749 nonn %O A008749 0,3 %A A008749 _N. J. A. Sloane_