This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008751 #21 Sep 08 2022 08:44:36 %S A008751 1,1,2,3,4,5,7,8,11,13,16,19,23,26,31,35,40,45,51,56,63,69,76,83,91, %T A008751 98,107,115,124,133,143,152,163,173,184,195,207,218,231,243,256,269, %U A008751 283,296,311,325,340,355 %N A008751 Expansion of (1+x^8)/((1-x)*(1-x^2)*(1-x^3)). %H A008751 Vincenzo Librandi, <a href="/A008751/b008751.txt">Table of n, a(n) for n = 0..1000</a> %H A008751 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,-1,-1,1). %F A008751 From _Henry Bottomley_, Sep 05 2000: (Start) %F A008751 a(n) = floor((n^2 - 2*n + 18)/6) for n>2. %F A008751 a(n) = a(n-2) + a(n-3) - a(n-5) + 2. %F A008751 a(n) = A001399(n) + A001399(n-8). %F A008751 a(n) = A008747(n-2) + 2 for n>2. (End) %t A008751 CoefficientList[Series[(1+x^8)/((1-x)(1-x^2)(1-x^3)),{x,0,50}],x] (* _Vincenzo Librandi_, Feb 25 2012 *) %t A008751 Join[{1,1,2}, Floor[((Range[3, 50] -1)^2 +17)/6]] (* _G. C. Greubel_, Aug 04 2019 *) %o A008751 (PARI) my(x='x+O('x^50)); Vec((1+x^8)/((1-x)*(1-x^2)*(1-x^3))) \\ _G. C. Greubel_, Aug 04 2019 %o A008751 (Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^8)/((1-x)*(1-x^2)*(1-x^3)) )); // _G. C. Greubel_, Aug 04 2019 %o A008751 (Sage) ((1+x^8)/((1-x)*(1-x^2)*(1-x^3))).series(x, 50).coefficients(x, sparse=False) # _G. C. Greubel_, Aug 04 2019 %o A008751 (GAP) Concatenation([1,1,2], List([3..50], n-> Int(((n-1)^2 +17)/6))); # _G. C. Greubel_, Aug 04 2019 %Y A008751 Cf. A001399, A008747. %K A008751 nonn,easy %O A008751 0,3 %A A008751 _N. J. A. Sloane_