This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008764 #22 Sep 08 2022 08:44:36 %S A008764 1,1,2,4,6,8,12,16,21,27,34,42,52,62,74,88,103,119,138,158,180,204, %T A008764 230,258,289,321,356,394,434,476,522,570,621,675,732,792,856,922,992, %U A008764 1066,1143,1223,1308,1396,1488,1584,1684,1788,1897,2009,2126,2248,2374,2504 %N A008764 Number of 3 X 3 symmetric stochastic matrices under row and column permutations. %H A008764 G. C. Greubel, <a href="/A008764/b008764.txt">Table of n, a(n) for n = 0..1000</a> %H A008764 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-1,-1,1,-1,2,-1). %F A008764 Expansion of (1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) = (1-x+x^2)/( (1+x)*(1+x+x^2)*(1+x^2)*(1-x)^4). %F A008764 a(n) = A008762(n) - A008762(n-1) + A008762(n-2). - _R. J. Mathar_, Aug 06 2013 %e A008764 There are 6 nonisomorphic symmetric 3 X 3 matrices with row and column sums 4: %e A008764 [0 0 4] [0 1 3] [0 1 3] [0 2 2] [0 2 2] [1 1 2] %e A008764 [0 4 0] [1 2 1] [1 3 0] [2 0 2] [2 1 1] [1 2 1] %e A008764 [4 0 0] [3 1 0] [3 0 1] [2 2 0] [2 1 1] [2 1 1] %p A008764 seq(coeff(series((1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # _G. C. Greubel_, Sep 10 2019 %t A008764 LinearRecurrence[{2,-1,1,-1,-1,1,-1,2,-1}, {1,1,2,4,6,8,12,16,21}, 60] (* _G. C. Greubel_, Sep 10 2019 *) %o A008764 (PARI) my(x='x+O('x^60)); Vec((1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))) \\ _G. C. Greubel_, Sep 10 2019 %o A008764 (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // _G. C. Greubel_, Sep 10 2019 %o A008764 (Sage) %o A008764 def A008764_list(prec): %o A008764 P.<x> = PowerSeriesRing(ZZ, prec) %o A008764 return P((1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list() %o A008764 A008764_list(60) # _G. C. Greubel_, Sep 10 2019 %o A008764 (GAP) a:=[1,1,2,4,6,8,12,16,21];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; a; # _G. C. Greubel_, Sep 10 2019 %Y A008764 Cf. A019298. %K A008764 nonn %O A008764 0,3 %A A008764 _N. J. A. Sloane_ %E A008764 Better description and more terms from _Vladeta Jovovic_, Feb 06 2000