This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008826 #78 Apr 02 2023 12:27:51 %S A008826 1,1,3,1,13,18,1,50,205,180,1,201,1865,4245,2700,1,875,16674,74165, %T A008826 114345,56700,1,4138,155477,1208830,3394790,3919860,1587600,1,21145, %U A008826 1542699,19800165,90265560,182184030,167310360,57153600,1,115973,16385857,335976195,2338275240,7342024200,11471572350,8719666200,2571912000 %N A008826 Triangle of coefficients from fractional iteration of e^x - 1. %C A008826 The triangle reflects the Jordan-decomposition of the matrix of Stirling numbers of the second kind. A display of the matrix formula can be found at the Helms link which also explains the generation rule for the A()-numbers in a different way. - _Gottfried Helms_ Apr 19 2014 %C A008826 From _Gus Wiseman_, Jan 02 2020: (Start) %C A008826 Also the number of balanced reduced multisystems with atoms {1..n} and depth k. A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. For example, row n = 4 counts the following multisystems: %C A008826 {1,2,3,4} {{1},{2,3,4}} {{{1}},{{2},{3,4}}} %C A008826 {{1,2},{3,4}} {{{1},{2}},{{3,4}}} %C A008826 {{1,2,3},{4}} {{{1},{2,3}},{{4}}} %C A008826 {{1,2,4},{3}} {{{1,2}},{{3},{4}}} %C A008826 {{1,3},{2,4}} {{{1,2},{3}},{{4}}} %C A008826 {{1,3,4},{2}} {{{1},{2,4}},{{3}}} %C A008826 {{1,4},{2,3}} {{{1,2},{4}},{{3}}} %C A008826 {{1},{2},{3,4}} {{{1}},{{3},{2,4}}} %C A008826 {{1},{2,3},{4}} {{{1},{3}},{{2,4}}} %C A008826 {{1,2},{3},{4}} {{{1,3}},{{2},{4}}} %C A008826 {{1},{2,4},{3}} {{{1,3},{2}},{{4}}} %C A008826 {{1,3},{2},{4}} {{{1},{3,4}},{{2}}} %C A008826 {{1,4},{2},{3}} {{{1,3},{4}},{{2}}} %C A008826 {{{1}},{{4},{2,3}}} %C A008826 {{{1},{4}},{{2,3}}} %C A008826 {{{1,4}},{{2},{3}}} %C A008826 {{{1,4},{2}},{{3}}} %C A008826 {{{1,4},{3}},{{2}}} %C A008826 (End) %C A008826 From _Harry Richman_, Mar 30 2023: (Start) %C A008826 Equivalently, T(n,k) is the number of length-k chains from minimum to maximum in the lattice of set partitions of {1..n} ordered by refinement. For example, row n = 4 counts the following chains, leaving out the minimum {1|2|3|4} and maximum {1234}: %C A008826 (empty) {12|3|4} {12|3|4} < {123|4} %C A008826 {13|2|4} {12|3|4} < {124|3} %C A008826 {14|2|3} {12|3|4} < {12|34} %C A008826 {1|23|4} {13|2|4} < {123|4} %C A008826 {1|24|3} {13|2|4} < {134|2} %C A008826 {1|2|34} {13|2|4} < {13|24} %C A008826 {123|4} {14|2|3} < {124|3} %C A008826 {124|3} {14|2|3} < {134|2} %C A008826 {134|2} {14|2|3} < {14|23} %C A008826 {1|234} {1|23|4} < {123|4} %C A008826 {12|34} {1|23|4} < {1|234} %C A008826 {13|24} {1|23|4} < {14|23} %C A008826 {14|23} {1|24|3} < {124|3} %C A008826 {1|24|3} < {1|234} %C A008826 {1|24|3} < {13|24} %C A008826 {1|2|34} < {134|2} %C A008826 {1|2|34} < {1|234} %C A008826 {1|2|34} < {12|34} %C A008826 (End) %C A008826 Also the number of cells of dimension k in the fine subdivision of the Bergman complex of the complete graph on n vertices. - _Harry Richman_, Mar 30 2023 %D A008826 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 148. %H A008826 Alois P. Heinz, <a href="/A008826/b008826.txt">Rows n = 2..150, flattened</a> (first 19 rows from Vincenzo Librandi) %H A008826 Gottfried Helms, <a href="http://mathoverflow.net/questions/133593/151281#151281">How this expression leads to the given sequence</a>, MathOverflow. %H A008826 Federico Ardila and Caroline J. Klivans, <a href="https://doi.org/10.1016/j.jctb.2005.06.004">The Bergman complex of a matroid and phylogenetic trees</a>, J. Combin. Theory Ser. B, 96 (2006), 38-49. %F A008826 G.f. A(n;x) for n-th row satisfies A(n;x) = Sum_{k=0..n-1} Stirling2(n, k)*A(k;x)*x, A(1;x) = 1. - _Vladeta Jovovic_, Jan 02 2004 %F A008826 Sum_{k=1..n-1} (-1)^k*T(n,k) = (-1)^(n-1)*(n-1)! = A133942(n-1). - _Geoffrey Critzer_, Sep 06 2020 %e A008826 Triangle starts: %e A008826 1; %e A008826 1, 3; %e A008826 1, 13, 18; %e A008826 1, 50, 205, 180; %e A008826 1, 201, 1865, 4245, 2700; %e A008826 1, 875, 16674, 74165, 114345, 56700; %e A008826 1, 4138, 155477, 1208830, 3394790, 3919860, 1587600; %e A008826 ... %e A008826 The f-vector of (the fine subdivision of) the Bergman complex of the complete graph K_3 is (1, 3). The f-vector of the Bergman complex of K_4 is (1, 13, 18). - _Harry Richman_, Mar 30 2023 %p A008826 b:= proc(n) option remember; expand(`if`(n=1, 1, %p A008826 add(Stirling2(n, j)*b(j)*x, j=0..n-1))) %p A008826 end: %p A008826 T:= (n, k)-> coeff(b(n), x, k): %p A008826 seq(seq(T(n, k), k=1..n-1), n=2..10); # _Alois P. Heinz_, Mar 31 2023 %t A008826 a[n_, x_] := Sum[ StirlingS2[n, k]*a[k, x]*x, {k, 0, n-1}]; a[1, _] = 1; Table[ CoefficientList[ a[n, x], x] // Rest, {n, 2, 10}] // Flatten (* _Jean-François Alcover_, Dec 11 2012, after _Vladeta Jovovic_ *) %t A008826 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A008826 tots[m_]:=Prepend[Join@@Table[tots[p],{p,Select[sps[m],1<Length[#]<Length[m]&]}],m]; %t A008826 Table[Length[Select[tots[Range[n]],Depth[#]==k&]],{n,2,6},{k,2,n}] (* _Gus Wiseman_, Jan 02 2020 *) %Y A008826 Row sums are A005121. %Y A008826 Alternating row sums are signed factorials A133942(n-1). %Y A008826 Column k = 2 is A008827. %Y A008826 Diagonal k = n - 1 is A006472. %Y A008826 Diagonal k = n - 2 is A059355. %Y A008826 Row n equals row 2^n of A330727. %Y A008826 Cf. A000110, A000111, A000258, A002846, A005121, A008277, A306186, A317176, A318813, A320154, A330667, A330679, A330784. %K A008826 nonn,tabl,nice %O A008826 2,3 %A A008826 _N. J. A. Sloane_, Mar 15 1996 %E A008826 More terms from _Vladeta Jovovic_, Jan 02 2004