This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008830 #15 Sep 08 2022 08:44:36 %S A008830 0,1,8,2,4,9,7,3,6,5 %N A008830 Discrete logarithm of n to the base 2 modulo 11. %C A008830 Equivalently, a(n) is the multiplicative order of n with respect to base 2 (modulo 11), i.e., a(n) is the base-2 logarithm of the smallest k such that 2^k mod 11 = n. - _Jon E. Schoenfield_, Aug 21 2021 %D A008830 I. M. Vinogradov, Elements of Number Theory, p. 220. %H A008830 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DiscreteLogarithm.html">Discrete Logarithm</a>. %F A008830 2^a(n) == n (mod 11). - _Michael S. Branicky_, Aug 13 2021 %e A008830 From _Jon E. Schoenfield_, Aug 21 2021: (Start) %e A008830 Sequence is a permutation of the 10 integers 0..9: %e A008830 k 2^k 2^k mod 11 %e A008830 -- ------ ---------- %e A008830 0 1 1 so a(1) = 0 %e A008830 1 2 2 so a(2) = 1 %e A008830 2 4 4 so a(4) = 2 %e A008830 3 8 8 so a(8) = 3 %e A008830 4 16 5 so a(5) = 4 %e A008830 5 32 10 so a(10) = 5 %e A008830 6 64 9 so a(9) = 6 %e A008830 7 128 7 so a(7) = 7 %e A008830 8 256 3 so a(3) = 8 %e A008830 9 512 6 so a(6) = 9 %e A008830 10 1024 1 %e A008830 but a(1) = 0, so the sequence is finite with 10 terms. %e A008830 (End) %p A008830 a:= n-> numtheory[mlog](n, 2, 11): %p A008830 seq(a(n), n=1..10); # _Alois P. Heinz_, Aug 21 2021 %o A008830 (Magma) j := 11; F := FiniteField(j); PrimitiveElement(F); [ Log(F!n) : n in [ 1..j-1 ]]; %o A008830 (Python) %o A008830 from sympy.ntheory import discrete_log %o A008830 def a(n): return discrete_log(11, n, 2) %o A008830 print([a(n) for n in range(1, 11)]) # _Michael S. Branicky_, Aug 13 2021 %Y A008830 Cf. A036117. %K A008830 nonn,base,fini,full %O A008830 1,3 %A A008830 _N. J. A. Sloane_