This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008832 #31 Aug 14 2021 16:03:27 %S A008832 0,1,13,2,16,14,6,3,8,17,12,15,5,7,11,4,10,9 %N A008832 Discrete logarithm of n to the base 2 modulo 19. %C A008832 Equivalently, a(n) is the multiplicative order of n with respect to base 2 (modulo 19), i.e., a(n) is the base-2 logarithm of the smallest k such that 2^k mod 19 = n. - _Jon E. Schoenfield_, Aug 13 2021 %D A008832 Carl Friedrich Gauss, "Disquisitiones Arithmeticae", Yale University Press, 1965; see p. 37. %D A008832 I. M. Vinogradov, Elements of Number Theory, p. 221. %H A008832 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DiscreteLogarithm.html">Discrete Logarithm</a>. %F A008832 2^a(n) == n (mod 19). - _Michael S. Branicky_, Aug 13 2021 %e A008832 From _Jon E. Schoenfield_, Aug 13 2021: (Start) %e A008832 Sequence is a permutation of the 18 integers 0..17: %e A008832 k 2^k 2^k mod 19 %e A008832 -- ------ ---------- %e A008832 0 1 1 so a(1) = 0 %e A008832 1 2 2 so a(2) = 1 %e A008832 2 4 4 so a(4) = 2 %e A008832 3 8 8 so a(8) = 3 %e A008832 4 16 16 so a(16) = 4 %e A008832 5 32 13 so a(13) = 5 %e A008832 6 64 7 so a(7) = 6 %e A008832 7 128 14 so a(14) = 7 %e A008832 8 256 9 so a(9) = 8 %e A008832 9 512 18 so a(18) = 9 %e A008832 10 1024 17 so a(17) = 10 %e A008832 11 2048 15 so a(15) = 11 %e A008832 12 4096 11 so a(11) = 12 %e A008832 13 8192 3 so a(3) = 13 %e A008832 14 16384 6 so a(6) = 14 %e A008832 15 32768 12 so a(12) = 15 %e A008832 16 65536 5 so a(5) = 16 %e A008832 17 131072 10 so a(10) = 17 %e A008832 18 262144 1 %e A008832 but a(1) = 0, so the sequence is finite with 18 terms. %e A008832 (End) %p A008832 [ seq(mlog(n,2,19), n=1..18) ]; %t A008832 a[1]=0; a[n_]:=MultiplicativeOrder[2, 19, {n}]; Array[a, 18] (* _Vincenzo Librandi_, Mar 21 2020 *) %o A008832 (PARI) a(n) = znlog(n, Mod(2, 19)); \\ _Kevin Ryde_, Aug 13 2021 %o A008832 (Python) %o A008832 from sympy.ntheory import discrete_log %o A008832 def a(n): return discrete_log(19, n, 2) %o A008832 print([a(n) for n in range(1, 19)]) # _Michael S. Branicky_, Aug 13 2021 %Y A008832 Cf. A036120. %K A008832 nonn,base,fini,full %O A008832 1,3 %A A008832 _N. J. A. Sloane_ %E A008832 Offset corrected by _Jon E. Schoenfield_, Aug 12 2021