cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008839 Numbers k such that the decimal expansion of 5^k contains no zeros.

This page as a plain text file.
%I A008839 #62 Feb 16 2025 08:32:32
%S A008839 0,1,2,3,4,5,6,7,9,10,11,17,18,30,33,58
%N A008839 Numbers k such that the decimal expansion of 5^k contains no zeros.
%C A008839 Probably 58 is last term.
%C A008839 Searched for k up to 10^10. - _David Radcliffe_, Dec 27 2015
%H A008839 M. F. Hasler, <a href="https://oeis.org/wiki/Zeroless_powers">Zeroless powers</a>, OEIS Wiki, Mar 07 2014.
%H A008839 W. Schneider, <a href="/A007496/a007496.html">NoZeros: Powers n^k without Digit Zero</a> [Cached copy]
%H A008839 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Zero.html">Zero</a>.
%e A008839 Here is 5^58, conjecturally the largest power of 5 that does not contain a 0:
%e A008839 34694469519536141888238489627838134765625. - _N. J. A. Sloane_, Feb 10 2023, corrected by _Patrick De Geest_, Jun 09 2024
%t A008839 Do[ If[ Union[ RealDigits[ 5^n ][[1]]] [[1]] != 0, Print[ n ]], {n, 0, 25000}]
%o A008839 (Magma) [ n: n in [0..500] | not 0 in Intseq(5^n) ]; // _Vincenzo Librandi_ Oct 19 2012
%o A008839 (PARI) for(n=0,99,vecmin(digits(5^n))&& print1(n",")) \\ _M. F. Hasler_, Mar 07 2014
%Y A008839 Cf. A000351 (5^n).
%Y A008839 For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943, A103662.
%Y A008839 For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944.
%Y A008839 For other related sequences, see A305925, A052382, A027870, A102483, A103663.
%K A008839 nonn,base
%O A008839 1,3
%A A008839 _Olivier Gérard_
%E A008839 Definition corrected and initial term 0 added by _M. F. Hasler_, Sep 25 2011
%E A008839 Further edits by _M. F. Hasler_, Mar 08 2014
%E A008839 Keyword:fini removed by _Jianing Song_, Jan 28 2023 as finiteness is only conjectured.