This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008848 #41 Dec 13 2024 12:39:39 %S A008848 1,81,400,32400,1705636,3648100,138156516,295496100,1055340196, %T A008848 1476326929,2263475776,2323432804,2592846400,2661528100,7036525456, %U A008848 10994571025,17604513124,39415749156,61436066769,85482555876,90526367376,97577515876,98551417041 %N A008848 Squares whose sum of divisors is a square. %C A008848 Solutions to sigma(x^2) = (2k+1)^2. - _Labos Elemer_, Aug 22 2002 %C A008848 Intersection of A006532 and A000290. The product of any two coprime terms is also in this sequence. - _Charles R Greathouse IV_, May 10 2011 %C A008848 Also intersection of A069070 and A000290. - _Michel Marcus_, Oct 06 2013 %C A008848 Conjectures: (1) a(2) = 81 is the only prime power (A246655) in this sequence. (2) 81 and 400 are only terms x for which sigma(x) is in A246655. (3) x = 1 is the only such term that sigma(x) is also a term. See also comments in A074386, A336547 and A350072. - _Antti Karttunen_, Jul 03 2023, (2) corrected in May 11 2024 %D A008848 A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 10. %D A008848 I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002. %H A008848 Donovan Johnson, <a href="/A008848/b008848.txt">Table of n, a(n) for n = 1..400</a> %F A008848 a(n) = A008847(n)^2. %e A008848 n=81: sigma(81) = 1+3+9+27+81 = 121 = 11^2. %e A008848 n=400: sigma(400) = sigma(16)*sigma(25) = 31*31 = 961. %e A008848 n=32400 (= 81*400): sigma(32400) = 116281 = 341^2 = 121*961. %t A008848 Do[s=DivisorSigma[1, n^2]; If[IntegerQ[Sqrt[s]]&&Mod[s, 2]==1, Print[n^2]], {n, 1, 10000000}] (* _Labos Elemer_ *) %t A008848 Select[Range[320000]^2,IntegerQ[Sqrt[DivisorSigma[1,#]]]&] (* _Harvey P. Dale_, Feb 22 2015 *) %o A008848 (PARI) for(n=1,1e6,if(issquare(sigma(n^2)), print1(n^2", "))) \\ _Charles R Greathouse IV_, May 10 2011 %Y A008848 Terms of A008847 squared. %Y A008848 Cf. A028982, A001248, A000203, A074386, A231484 (odd terms), A246655, A336547, A350072. %Y A008848 Subsequence of A000290, of A006532, and of A069070. %K A008848 nonn %O A008848 1,2 %A A008848 _N. J. A. Sloane_